■ポアンカレ多項式(その99)
[3^1,1,1]はt1β4=F4,{3,3,4}(0100)={3,4,3}
[3^2,1,1]はt1β5,{3,3,3,4}(01000)
[3^n,1,1]はt1βn+3
と考える.
[3]はeα2(六角形){3}(11)
[3,3]はeα3=t1β3(立方八面体){3,3}(101)
[3,3,3]=[3^3]はeα4{3,3,3}(1001)
[3,3,・・・,3]=[3^n]はeαn+1
と考える.
===================================
E7,E6,E5=D5,E4=A4,E3=A2×A1
321,221,121=hγ5,021=t1α4,(−1)21=α2×α1
hγ4=β4,t1β4={3,4,3},hδ5={3,3,4,3}
0qr=tqαq+r*1=trαq+r*1
hγ2=α1,hγ3=α3,hγ4=β4
pq0=αp+q+1,p11=βp+3,1q1=hγq+3
pqrの頂点図形は(p−1)qrであるから,
0qr=tqαq*r+1=trαq+r+1=trαn (n=q+r+1)
(−1)qr=αq×αr
空間充填図形521,331,222の頂点図形は421,231,122
0[n]=αn-1h,hδnの頂点図形はeαn,t1βn
===================================