[3]4P=2P+2P,(0,4),(0,4)
倍角公式にP(0,4),a=0,b=1を代入すると
x3=(x1^4-2ax1^2-8bx1+a^2)/4(x1^3+ax1+b)
=0
y3={(3x1^2+a)/2y1}(x1-x3)-y1
=-4 → 4P(0,1)
[4]5P=3P+2P,(4,0),(0,4)
x3={(y2-y1)/(x2-x1)}^2-x1-x2
x3={4/-4}^2-4=-3
y3={(y2-y1)/(x2-x1)}(x1-x3)-y1
y3={-1}(7)=-7 → 5P(2,3),今度は分数が出現しなかった.
===================================