■連分数展開の第n近似分数(その200)

 連分数展開が有限で終わることと有理数であることは同値です.そこで,2次方程式の解となる√nの連分数展開を求めると,たとえば

  √2=[1:2,2,2,2,・・・]

  √3=[1:1,2,1,2,1,2,1,2,・・・]

  √7=[2:1,1,1,4,1,1,1,4,・・・]

のように循環型の単純連分数に展開されることが知られています.一般に,2次の無理数(整数係数の2次方程式の解)は周期的な連分数展開をもちます(ラグランジュの定理).

 平方根を無限連分数に表す手順はわかりやすく,たとえば,1<√2<2であるから

  √2=1+(√2−1)

    =1+1/(√2+1)    2<√2+1<3

    =1+1/{2+(√2−1)}

    =1+1/{2+1/(√2+1)}

    =1+1/{2+1/(2+(√2−1)}

    =1+1/{2+1/(2+1/(√2+1)}

    =1+1/{2+1/{2+1/{2+1/{2+・・・

の手順を何度も繰り返すことにより,

  √2=[1:2,2,2,2,・・・]

ができあがります.また,黄金比φ=(1+√5)/2は,

  φ=[1:1,1,1,,1,・・・]

で表されます.黄金比φ=(1+√5)/2が,無限連分数

  φ=[1:1,1,1,,1,・・・]

や無限の入れ子の根号

  φ=√(1+√(1+√(1+√(1+・・・

で3通りにも表されるという事実は魔法のようにさえ思えます.

 連分数展開を用いて数の集合を定義してみますが,たとえば,正の実数が無限連分数展開され,そのすべての部分商が1または2であるような実数の集合のハウスドルフ次元は0.531280506・・・であることが計算されています.

===================================