■連分数展開の第n近似分数(その178)

 ヒンチンは

  a1+a2+・・・+an〜nlog2n

を証明しました.算術平均は発散するのに対し幾何平均は収束するというわけです.

===================================

 算術平均

  Σ(1,n)klog2(1+1/k(k+2))

=Σ(1,n)k{1/k(k+2)−1/2k^2(k+2)^2+1/3k^3(k+2)^3−1/4k^4(k+2)^4}/log2

〜Σ(1,n){1/(k+2)}/log2

 すなわち,調和数となるが,それでは

  ln(n)+O(1)

になってしまう.要再考.

===================================