■ラムゼー数(その13)

 オイラー関係式

  fn=Σ(0,n)(−1)^jfj=1

は交代級数であるが,非交代版はどうなるだろうか?

===================================

[1]空間充填2(2^n−1)胞体

  Σfkx^k={(1+x)^n+1−1}/x

に1を代入すると,2^n+1−1.さらにfn=1を引くと

  2(2^n−1)

 空間充填2(2^n−1)胞体の面数はデーン・サマービル関係式を満たす.

2次元:(f0,f1)=(6,6)

3次元:(f0,f1,f2)=(24,36,14)

4次元:(f0,f1,f2,f3)=(120,240,150,30)

5次元:(f0,f1,f2,f3,f4)=(720,1800,1560,540,62)

6次元:(f0,f1,f2,f3,f4,f5)=(5040,15120,16800,8400,1806,126)

 fn-1=2(2^n−1)

===================================

[2]3^n−1胞体

  Σfkx^k={(1+2x)^n−1}/x

に1を代入すると,3^n−1.

  Σfkx^k=(2+x)^n

に1を代入すると,3^n.さらにfn=1を引くと

  3^n−1

 3^n−1胞体の面数はデーン・サマービル関係式を満たす.

2次元:(f0,f1)=(8,8)

3次元:(f0,f1,f2)=(48,72,26)

4次元:(f0,f1,f2,f3)=(384,768,464,80)

5次元:(f0,f1,f2,f3,f4)=(3840,9600,8160,2640,242)

6次元:(f0,f1,f2,f3,f4,f5)=(46080,138240,151680,72960,14168,728)

 fn-1=3^n−1

===================================