■源氏香図(その30)
二項係数C(n,k)=(n,k)
第1種スターリング数T(n,k)=[n,k]
第2種スターリング数S(n,k)={n,k}
と記すことにする
===================================
x^n={n,1}x+{n,2}x(x-1)+{n,3}x(x-1)(x-2)+・・・+{n,n}x(x-1)(x-2)・・・(x-n+1)
x^n=(-1)^(n-1){n,1}x+(-1)^(n-2){n,2}x(x+1)+(-1)^(n-3){n,3}x(x+1)(x+2)+・・・+(-1)^(n-n){n,n}x(x+1)(x+2)・・・(x+n-1)
1/(1-x)(1-2x)・・・(1-kx)={k,k}+{k+1,k}x+{k+2,k}x^2+{k+3,k}x^3+・・・
{n,k}=1/k!・{k^n-(k,1)(k-1)^n+(k,2)(k-2)^n-(k,3)(k-3)^n+・・・+(-1)^(k-1)(k,k-1)(1)^n}
===================================
(1+x)(1+2x)・・・(1+(n-1)x)=[n,1]x^n-1+[n,2]x^n-2+[n,3]x^n-3+・・・+[n,n-1]x+[n,n]
x(x+1)(x+2)・・・(x+n-1)=[n,1]x+[n,2]x^2+[n,3]x^3+・・・+[n,n]x^n
x(x-1)(x-2)・・・(x-n+1)=(-1)^(n-1)[n,1]x+(-1)^(n-2)[n,2]x^2+[n,3]x^3+・・・+[n,n]x^n
===================================
ベル数をB()で表す。
B(n+1)=(n,0)B(0)+(n,1)B(1)+(n,2)B(2)+・・・+(n,n)B(n)
1^n/1!+2^n/2!+3^n/3!+・・・=B(n)e
exp(exp(x)-1)=B(0)+B(1)/1!・x+B(2)/2!・x^2+B(3)/3!・x^3+・・・
({n,1}+{n,2}x+{n,3}x^2+・・・+{n,n}x^n-1)exp(x)=1^n/1!+2^n/2!・x+3^n/3!・x^2+・・・
1/k!(exp(x)-1)^k={0,k}1/0!+{1,k}x/1!+{2,k}x^2/2!+{3,k}x^3/3!+・・・
1/k!(-log(1-x))^k=[0,k]1/0!+[1,k]x/1!+[2,k]x^2/2!+[3,k] x^3/3!+・・・
===================================