■πの近似値(その9)

古代中国では

π〜√10=3.1622と考えられていた。

π〜√2+√3=3.1462・・・でもっと近い。

π〜(31)^1/3=3.1413・・・

π〜{2^9+(19^2)/22}^1/4=3.141592652・・・ (ラマヌジャン)

はいったいどこから導き出したのだろうか? 天才数学者だけが知る魔術だろうか?

===================================

π>3.05(東大入試問題)の証明は何通りも知られていますが、定番は、

半径1の円の円周は2π、その円に内接する正八角形の1辺の長さは余弦定理より(2-√2)^1/2より

2π>8(2-√2)^1/2

π>4(2-√2)^1/2>3.05

===================================