■あいこの問題(その7)
[Q]n人でじゃんけんをしたとき,あいこになる確率は?
[A]あいこにならない確率を求めて1からひく.全員の手の出し方は3^n通り.あいこにならないのは全員の手が2種類(たとえばグーとチョキ)で3通りある.全員がグーまたはチョキとなる手の出し方は2^n通りであるが,全員がグーまたは全員がチョキとなる手の出し方の2通りを除外する必要があるから,3(2^n−2)通り.
{3^n−3(2^n−2)}/3^n
=1−(2^n−2)/3^n-1
n=2のとき,1−2/3=1/3
n=3のとき,1−6/9=1/3
n=4のとき,1−14/27=13/27
[参]清史弘「数学的思考の日常」、現代数学社
ではこの問題を深化させています。・・・n人でじゃんけんをすれば平均何回で終わるか?
===================================
[1]n人がじゃんけんしてm人が勝つ確率qm
qm=nCm・3・(1/3)^n=nCm・(1/3)^n-1
[2]あいこになる確率=誰も勝たない確率
1-q1-q2・・・-qn-1=1-(1/3)^n-1・ΣnCm
=1−(2^n−2)/3^n-1
===================================
[3]n人でじゃんけんを始めて、勝者が1人に決まるまでのじゃんけんの回数の期待値
まずは2人でじゃんけんをしたとき決着がつくまでの回数の期待値E2を求めると
k-1回あいこが続き、k回目に勝者が決まる確率をpkとすると
n=2のとき,あいこになる確率は1−2/3=1/3であるから
pk=(1/3)^k-1・(1-1/3)
E2=Σkpk=(2/3) Σ(1/3)^k-1=(2/3) 1/(1-/3)^2=3/2
これは2人でじゃんけんすると平均1.5回で決着がつくことを意味している。
===================================