■18世紀における微積分(その128)
(その122):y=(1+1/x)^(x+1/2)は単調減少で→e
(その123):y=(1+1/x)^(x+1/3)は単調増加で→e
であった.
y=(1+1/x)^(x+1/m)
は2<m<3の間で,単調減少でも単調増加でもない変動を示すはずである.
予想される値は
2^(1+1/m)=e
(1+1/m)log2=1
1+1/m=1/log2,m=log2/(1−log2)=2.25889
であるが,正しいだろうか?
===================================
[1]m=√5
1 2.72681
1.1 2.71956
1.2 2.71403
1.3 2.70977
1.4 2.70646
1.5 2.70388
1.6 2.70185
1.7 2.70027
1.8 2.69903
1.9 2.69807
2 2.69732
2.1 2.69676
2.2 2.69634
2.3 2.69603
2.4 2.69582
2.5 2.69569
2.6 2.69563
2.7 2.69562
2.8 2.69565
2.9 2.69572
3 2.69582
===================================
[2]m=√6
1 2.65415
1.1 2.65189
1.2 2.65068
1.3 2.65019
1.4 2.65021
1.5 2.65059
1.6 2.65122
1.7 2.65203
1.8 2.65296
1.9 2.65398
2 2.65504
2.1 2.65614
2.2 2.65725
2.3 2.65837
2.4 2.65948
2.5 2.66058
2.6 2.66166
2.7 2.66272
2.8 2.66376
2.9 2.66478
3 2.66577
===================================
[3]m=√7
1 2.59901
1.1 2.60047
1.2 2.60247
1.3 2.6048
1.4 2.6073
1.5 2.6099
1.6 2.61253
1.7 2.61513
1.8 2.6177
1.9 2.62021
2 2.62264
2.1 2.625
2.2 2.62727
2.3 2.62947
2.4 2.63158
2.5 2.63361
2.6 2.63556
2.7 2.63744
2.8 2.63924
2.9 2.64098
3 2.64264
===================================
[4]m=√8
1 2.55541
1.1 2.55974
1.2 2.56425
1.3 2.56877
1.4 2.57322
1.5 2.57756
1.6 2.58174
1.7 2.58577
1.8 2.58962
1.9 2.5933
2 2.59681
2.1 2.60016
2.2 2.60335
2.3 2.6064
2.4 2.6093
2.5 2.61207
2.6 2.61471
2.7 2.61723
2.8 2.61964
2.9 2.62195
3 2.62415
===================================