■DE群多面体の計量(その269)
Enの局所幾何学.Enのひとつの頂点に集まる基本単体数は1:2であるから・・・
===================================
[1]E6
N0=x/2^4・5!=27,x=72・6!
N1=x/2・5!=216
N2=x/6・2・6=720(α2)
N3=x/24・2=1080(α3)
N4=x/5!・2+x/5!=216(α4)+432(α4)
N5=x/6!+x/2^4・5!=72(α5)+27(β5)
N0+N2+N4=N1+N3+N5=1395
α5のひとつの頂点に集まる基本単体数は6!/6
β5のひとつの頂点に集まる基本単体数は2^55!/10
それぞれx,y個ずつあるから
5!x:2^44!y=5x:16y=1:2
5x=8y
f5=27(x/6+y/10)=99
5x+3y=220
に代入すると
11y=220,y=20,x=32
ひとつの頂点に4次元面(α4)がx個集まるとする.
f4=27(x/5)=648→x=120
ひとつの頂点に3次元面(α3)がx個集まるとする.
f3=27(x/4)=1080→x=160
ひとつの頂点に2次元面(α2)がx個集まるとする.
f2=27(x/3)=720→x=80
ひとつの頂点に1次元面(α1)がx個集まるとする.
f1=27(x/2)=216→x=16
===================================