■既約性判定基準(その59)
x^2+1は体C上では(x+i)(x-i)と因数分解できるが、体Qうえでは既約である。
おもしろいことに有限体GF(2)上では
x^2+1=x^2+2x+1=(x+1)^2のように因数分解できる。
===================================
【4】16元ガロア体の生成
ここでは、既約多項式π(x)=1+x+x^4と原始元α=(0,1,0,0)=xを利用して位数16の有限体を生成したい。
===================================
1+x+x^4を法とする剰余簡約では、1の要素αから始め、次にα=xをかけるので、1が右から消えるとき、一番左側の2つの位置に2を法として1を加えることに対応している
すなわち、
(0,0,0,0)=0
(1,0,0,0)=1
(0,1,0,0)=x
(0,0,1,0)=x^2
(0,0,0,1)=x^3
(1,1,0,0)=1+x
(0,1,1,0)=x+x^2
(0,0,1,1)=x^2+x^3
(1,1,0,1)=1+x+x^3
(1,0,1,0)=1+x^2
(0,1,0,1)=x+x^3
(1,1,1,0)=1+x+x^2
(0,1,1,1)=x+x^2+x^3
(1,1,1,1)=1+x+x^2+x3
(1,0,1,1)=1+x^2+x^3
(1,0,0,1)=1+x^3
(1,0,0,0)=1
===================================
【5】2^m元ガロア体の原始多項式
m=4の場合はπ(x)=1+x+x^4を用いたが、
m=2の場合、π(x)=1+x+x^2
m=3の場合、π(x)=1+x+x^3
m=4の場合、π(x)=1+x+x^4
m=5の場合、π(x)=1+x^2+x^5
m=6の場合、π(x)=1+x+x^6
を用いることによって実現される。
1+x+x^5はGF(2)上で既約ではなく、(1+x^2+x^3)(1+x+x^2)と因数分解される
===================================
mの場合の原始多項式は
φ(p^m-1)/m個
存在する。
m=5の場合、φ(2^5-1)/5=6個nの異なる原始多項式が存在する。
π(x)=1+x^2+x^5
π(x)=1+x^3+x^5
π(x)=1+x+x^2+x^3+x^5
π(x)=1+x^2+x^3+x^4+x^5
π(x)=1+x+x^2+x^4+x^5
π(x)=1+x+x^3+x^4+x^5
===================================
φ(m)は,mと互いに素であり,mより小さい整数r,1≦r<mの個数として定義される.すなわち,φ(m)は1からm−1までの整数のうち,mと公約数をもたない数はいくつあるかを数えた数を表す.
m=9→1,2,4,5,7,8→φ(9)=6
m=10→1,3,7,9→φ(10)=4
φ(1)=1,φ(2)=1,φ(3)=2,φ(4)=2
φ(5)=4,φ(6)=2,φ(7)=6,φ(8)=4
φ(9)=6,φ(10)=4,
φ(p)=p−1
φ(p^a)=(p−1)p^(a-1)=p^a(1−1/p)
φ(m)=mΠ(1−1/pi)
φ(10)=10(1−1/2)(1−1/5)=4
m=2のとき、φ(3)/2=1
m=3のとき、φ(7)/3=2
m=4のとき、φ(15)/4
φ(15)=φ(3)φ(5)=8より
m=4のとき、φ(15)/4=2・・・(1+x+x^4と1+x^3+x^4)
1+x+x^2+x^3+x~4は既約多項式であるが、原始元をもたないので原始多項式ではない
原始多項式でない既約多項式はn(1+x+x^2+x^3+x~4)(1+x)=1+x^5
m=5のとき、φ(31)/5=30/5=6
m=6のとき、φ(63)/6
φ(63)=φ(7)φ(9)=36より
φ(36)/6=6
===================================