■既約性判定基準(その56)

【4】16元ガロア体の生成

ここでは、既約多項式π(x)=1+x+x^4と原始元α=(0,1,0,0)=xを利用して位数16の有限体を生成したい。

===================================

1+x+x^4を法とする剰余簡約では、1の要素αから始め、次にα=xをかけるので、1が右から消えるとき、一番左側の2つの位置に2を法として1を加えることに対応している

すなわち、

(0,0,0,0)=0

(1,0,0,0)=1

(0,1,0,0)=x

(0,0,1,0)=x^2

(0,0,0,1)=x^3

(1,1,0,0)=1+x

(0,1,1,0)=x+x^2

(0,0,1,1)=x^2+x^3

(1,1,0,1)=1+x+x^3

(1,0,1,0)=1+x^2

(0,1,0,1)=x+x^3

(1,1,1,0)=1+x+x^2

(0,1,1,1)=x+x^2+x^3

(1,1,1,1)=1+x+x^2+x3

(1,0,1,1)=1+x^2+x^3

(1,0,0,1)=1+x^3

(1,0,0,0)=1

===================================

【5】2^m元ガロア体の原始多項式

m=4の場合はπ(x)=1+x+x^4を用いたが、

m=2の場合、π(x)=1+x+x^2

m=3の場合、π(x)=1+x+x^3

m=4の場合、π(x)=1+x+x^4

m=5の場合、π(x)=1+x^2+x^5

m=6の場合、π(x)=1+x+x^6

を用いることによって実現される。

1+x+x^5はGF(2)上で既約ではなく、(1+x^2+x^3)(1+x+x^2)と因数分解される

===================================

mの場合の原始多項式は

φ(p^m-1)/m個

存在する。

m=5の場合、φ(2^5-1)/5=6個nの異なる原始多項式が存在する。

π(x)=1+x^2+x^5

π(x)=1+x^3+x^5

π(x)=1+x+x^2+x^3+x^5

π(x)=1+x^2+x^3+x^4+x^5

π(x)=1+x+x^2+x^4+x^5

π(x)=1+x+x^3+x^4+x^5

===================================