■DE群多面体の計量(その137)
kaleidoscopes, p295
の大域・局所問題を計算する.
{3,3,4}(1,0,0,0)・・・(8,24,32,16),(1,6,12,8)
{3,3,4}(0,1,0,0)・・・(24,96,96,24),(1,8,12,6)
{3,3,4}(0,0,1,0)・・・(32,96,88,24),(1,6,9,5)
{3,3,4}(0.0.0,1)・・・(16,32,24,8),(1,4,6,4)
{3,3,4}(1,1,0,0)・・・(48,120,96,24),(1,5,8,5)
{3,3,4}(1,0,1,0)・・・(96,288,240,48),(1,6,9,5)
{3,3,4}(1,0,0,1)・・・(64,192,208,80),(1,6,12,8)
{3,3,4}(0,1,1,0)・・・(96,192,120,24),(1,4,6,4)
{3,3,4}(0,1,0,1)・・・(96,288,248,56),(1,6,9,5)
{3,3,4}(0,0,1,1)・・・(64,128,88,24),(1,4,6,4)
{3,3,4}(1,1,1,0)・・・(192,384,240,48),(1,4,6,4)
{3,3,4}(1,1,0,1)・・・(192,480,368,80),(1,5,8,5)
{3,3,4}(1,0,1,1)・・・(192,480,368,80),(1,5,8,5)
{3,3,4}(0,1,1,1)・・・(192,384,248,56),(1,4,6,4)
{3,3,4}(1,1,1,1)・・・(384,768,464,80),(1,4,6,4)
===================================
{3,3,4}(0,1,0,0)・・・(24,96,96,24),(1,8,12,6)これはbothなので問題なし
6 1
12 0
8 0 1
1 0 0 1
0 0 0 0 1
これにD4(8,-24,32,16,1)をかければOK
===================================
1 1
4 0
4 0 1
1 0 0 1
0 0 0 0 1
これに(2,-1,3,3,1)をかけてもNG
これに(2,-1,4,4,1)をかければOK
最後の二重節点の位置は{3,3}(010)である.
{3,3}(010)の局所幾何(1,4,4,1)より
m=(2,-1,4,4,1)としてみる.
===================================
1 1 1 1
4 2 1 0
4 1 0 0
1 0 0 0
0 0 0 0 1
3方向から枝刈りすると仮定して
これに(4,-6,6,-1,1)をかければNG
===================================
置換則は
(1)→(1)
(11)→(11)
(1,0,1)→(1,2,1)
(1,0,0,1)→(1,3,3,1)
(1,0,0,0,1)→(1,4,6,4,1)
(1,0,0,0,0,1)→(1,5,10,10,5,1) m+1Ck+1
であるが、最後の1はおまけなので・・・
(1,*,*,*,*,*)→ (1,*,*,*,*,*)
(0,1,*,*,*,*)→(2,1,*,*,*,*)
(0,0,1,*,*,*)→(3,3,1,*,*,*)
(0,0,0,1,*,*)→(4,6,4,1,*,*)
(0,0,0,0,1,*)→(5,10,10,5,1,*)
(0,0,0,0,0,1)→(6,15,20,15,6,1) m+1Ck+1
===================================
[1]αn:
(*,*,*,*,*,1)→ (*,*,*,*,*,1)
(*,*,*,*,1,0)→(*,*,*,*,1,2)
(*,*,*,1,0,0)→(*,*,*,1,3,3)
(*,*,1,0,0,0)→(*,*,1,4,6,4)
(*,1,0,0,0,0)→(*,1,5,10,10,5)
(1,0,0,0,0,0)→(1,6,15,20,15,6) m+1Ck+1
===================================
[1]βn:
(*,*,*,*,*,1)→ (*,*,*,*,*,1)
(*,*,*,*,1,0)→(*,*,*,*,1,2)
(*,*,*,1,0,0)→(*,*,*,1,4,4)これが適用される
(*,*,1,0,0,0)→(*,*,1,6,12,8)
(*,1,0,0,0,0)→(*,1,8,24,32,16)
(1,0,0,0,0,0)→(1,10,40,80,80,32) mCk2m-k
===================================
[1]γn:
(1,*,*,*,*,*)→ (1,*,*,*,*,*)
(0,1,*,*,*,*)→(2,1,*,*,*,*)
(0,0,1,*,*,*)→(4,4,1,*,*,*)
(0,0,0,1,*,*)→(8,12,6,1,*,*)
(0,0,0,0,1,*)→(16,32,24,8,1,*)
[1]γn:
(*,*,*,*,*,1)→ (*,*,*,*,*,1)
(*,*,*,*,1,0)→(*,*,*,*,1,2)
(*,*,*,1,0,0)→(*,*,*,1,3,3)
(*,*,1,0,0,0)→(*,*,1,4,6,4)
(*,1,0,0,0,0)→(*,1,5,10,10,5)
===================================
{3,4,3}
(1)→(1)
(11)→(11)
(1,0,1)→(1,2,1)
(1,0,0,1)→(1,4,4,1)
(1,*,*,*)→(1,*,*,*)
(0,1,*,*)→(2,1,*,*)
(0,0,1,*)→(3,3,1,*)
(0,0,0,1)→(6,12,8,1)
(*,*,*,1)→(*,*,*,1)
(*,*,1,0)→(*,*,1,2)
(*,1,0,0)→(*,1,3,3)
(1,0,0,0)→(1,8,12,6)
===================================
{3,3,5}
(1)→(1)
(11)→(11)
(1,0,1)→(1,2,1)
(1,0,0,1)→(1,3,3,1)
(1,*,*,*)→(1,*,*,*)
(0,1,*,*)→(2,1,*,*)
(0,0,1,*)→(3,3,1,*)
(0,0,0,1)→(4,6,4,1,1)
(*,*,*,1)→(*,*,*,1)
(*,*,1,0)→(*,*,1,2)
(*,1,0,0)→(*,1,5,5)
(1,0,0,0)→(1,12,30,20)
===================================