■DE群多面体の計量(その132)

  kaleidoscopes, p295

の大域・局所問題を計算する.both/neither→either

{3,3,4}(1,0,0,0)・・・(8,24,32,16),(1,6,12,8)

{3,3,4}(0,1,0,0)・・・(24,96,96,24),(1,8,12,6)

{3,3,4}(0,0,1,0)・・・(32,96,88,24),(1,6,9,5)

{3,3,4}(0.0.0,1)・・・(16,32,24,8),(1,4,6,4)

{3,3,4}(1,1,0,0)・・・(48,120,96,24),(1,5,8,5)

{3,3,4}(1,0,1,0)・・・(96,288,240,48),(1,6,9,5)

{3,3,4}(1,0,0,1)・・・(64,192,208,80),(1,6,12,8)

{3,3,4}(0,1,1,0)・・・(96,192,120,24),(1,4,6,4)

{3,3,4}(0,1,0,1)・・・(96,288,248,56),(1,6,9,5)

{3,3,4}(0,0,1,1)・・・(64,128,88,24),(1,4,6,4)

{3,3,4}(1,1,1,0)・・・(192,384,240,48),(1,4,6,4)

{3,3,4}(1,1,0,1)・・・(192,480,368,80),(1,5,8,5)

{3,3,4}(1,0,1,1)・・・(192,480,368,80),(1,5,8,5)

{3,3,4}(0,1,1,1)・・・(192,384,248,56),(1,4,6,4)

{3,3,4}(1,1,1,1)・・・(384,768,464,80),(1,4,6,4)

===================================

{3,3,4}(1,0,0,0)・・・(8,24,32,16),(1,6,12,8)を回転させて一重節点から始める

{3,3,4}(0,0,0,1)・・・(16,32,24,8)?

4 2 1

6 1 0 

4 0 0

1 0 0 1

0 0 0 0 1

これにD4(8,-24,32,16,1)をかけてもNG

===================================

1 1 1

3 1 0   

3 0 0

1 0 0 1

0 0 0 0 1

これに(3,-3,1,2,1)をかけてもNG

===================================

1 1 1

3 1 1   

3 0 0

1 0 0 1

0 0 0 0 1

これに(4,-6,4,1,1)をかけてもNG

===================================

1 1 1 1  

3 1 1 0   

3 0 0 0

1 0 0 0

0 0 0 0 1

これに(4,-6,4,-1,1)をかければOK

最後まで二重節点を残すように節点を消していくことに対応している

===================================