■DE群多面体の計量(その56)
kaleidoscopes, p295
の大域・局所問題を計算する.both/neither→either
{3,3,4}(1,0,0,0)・・・(8,24,32,16),(1,6,12,8)
{3,3,4}(0,1,0,0)・・・(24,96,96,24),(1,8,12,6)
{3,3,4}(0,0,1,0)・・・(32,96,88,24),(1,6,9,5)
{3,3,4}(0.0.0,1)・・・(16,32,24,8),(1,4,6,4)
{3,3,4}(1,1,0,0)・・・(48,120,96,24),(1,5,8,5)
{3,3,4}(1,0,1,0)・・・(96,288,240,48),(1,6,9,5)
{3,3,4}(1,0,0,1)・・・(64,192,208,80),(1,6,12,8)
{3,3,4}(0,1,1,0)・・・(96,192,120,24),(1,4,6,4)
{3,3,4}(0,1,0,1)・・・(96,288,248,56),(1,6,9,5)
{3,3,4}(0,0,1,1)・・・(64,128,88,24),(1,4,6,4)
{3,3,4}(1,1,1,0)・・・(192,384,240,48),(1,4,6,4)
{3,3,4}(1,1,0,1)・・・(192,480,368,80),(1,5,8,5)
{3,3,4}(1,0,1,1)・・・(192,480,368,80),(1,5,8,5)
{3,3,4}(0,1,1,1)・・・(192,384,248,56),(1,4,6,4)
{3,3,4}(1,1,1,1)・・・(384,768,464,80),(1,4,6,4)
===================================
{3,3,4}(1,1,0,0)・・・(48,120,96,24),(1,5,8,5)を回転させて一重節点から始める
12 2
18 1
8 0 1
1 0 0 1
0 0 0 0 1
これにD4(8,-24,32,16,1)をかければOK
===================================
1 1
3 1
3 0 1
1 0 0 1
0 0 0 0 1
これに(2,-1,2,3,1)をかければOKではなく、書き換えが必要である
===================================
1 1
3 1
3 0 1
1 0 1 1
0 0 0 0 1
これに(2,-1,2,1,1)をかければOK
最後まで二重節点を残すように節点を消していくことに対応している
===================================