■五芒星と掛谷の問題(その267)

焦点の変更により、以下の記述は無意味なものになる。

===================================

X-α=[cosmθ,-sinmθ][x]

Y-β=[sinmθ, cosmθ][+/-√(4px)]

でもよいが

X-α=[cosmθ,-sinmθ][pt^2]

Y-β=[sinmθ, cosmθ][2pt]としてy=tanθ・xとの交点(rcosθ,rsinθ)を求める。tは2次方程式の根の小さいほう

rcosθ-α=cosmθ・pt^2-sinmθ・2pt

rsinθ-β=sinmθ・pt^2+cosmθ・2pt

rcosθ=cosmθ・pt^2-sinmθ・2pt+α

rsinθ=sinmθ・pt^2+cosmθ・2pt+β

tanθ=(sinmθ・pt^2+cosmθ・2pt+β)/(cosmθ・pt^2-sinmθ・2pt+α), (α,β)は既知

を解いてtを求める。

(sinmθ・pt^2+cosmθ・2pt+β)=tanθ(cosmθ・pt^2-sinmθ・2pt+α)

a=(sinmθ-tanθcosmθ)・p

b=(cosmθ+tanθsinmθ)・p

c=β-tanθα

r^2=(cosmθ・pt^2-sinmθ・2pt+α)^2+(sinmθ・pt^2+cosmθ・2pt+β)^2

===================================

反対方向に回転させた場合(あるいはYを反転させてもよい)

X-α=[cosmθ,-sinmθ][pt^2]

Y-β=[sinmθ, cosmθ][2pt]

X=cosmθ・pt^2-sinmθ・2pt+α

Y=-sinmθ・pt^2-cosmθ・2pt-β,tは2次方程式の根の大きいほう

(rcosθ、rsinθ)と(rcos(π-2θ),rsin(π-2θ))=(-rcos2θ,rsin2θ)を結ぶ直線

Y=(rsin2θ-rsinθ)/(-rcos2θ-rcosθ)・(X-rcosθ)+rsinθ

との交点を求める

(Y-rsinθ)(-rcos2θ-rcosθ)=(rsin2θ-rsinθ)・(X-rcosθ)

(-sinmθ・pt^2-cosmθ・2pt-β-rsinθ)(-rcos2θ-rcosθ)=(rsin2θ-rsinθ)・(cosmθ・pt^2-sinmθ・2pt+α-rcosθ)

(sinmθ・pt^2+cosmθ・2pt+β+rsinθ)(rcos2θ+rcosθ)=(cosmθ・pt^2-sinmθ・2pt+α-rcosθ)(rsin2θ-rsinθ)

a={sinmθ(rcos2θ+rcosθ)-cosmθ(rsin2θ-rsinθ)}・p

b=[cosmθ(rcos2θ+rcosθ)+sinmθ(rsin2θ-rsinθ)}・p

c=(β+rsinθ)(rcos2θ+rcosθ)-(α-rcosθ)(rsin2θ-rsinθ)

===================================

(rcosθ、rsinθ)と(rcos(π-2θ),rsin(π-2θ))=(-rcos2θ,rsin2θ)の中点((rcosθ-rcos2θ)/2,((rsinθ+rsin2θ)/2)

からの距離の2乗

2Lと1+rの比較が問題となる

===================================