■五芒星と掛谷の問題(その267)
焦点の変更により、以下の記述は無意味なものになる。
===================================
X-α=[cosmθ,-sinmθ][x]
Y-β=[sinmθ, cosmθ][+/-√(4px)]
でもよいが
X-α=[cosmθ,-sinmθ][pt^2]
Y-β=[sinmθ, cosmθ][2pt]としてy=tanθ・xとの交点(rcosθ,rsinθ)を求める。tは2次方程式の根の小さいほう
rcosθ-α=cosmθ・pt^2-sinmθ・2pt
rsinθ-β=sinmθ・pt^2+cosmθ・2pt
rcosθ=cosmθ・pt^2-sinmθ・2pt+α
rsinθ=sinmθ・pt^2+cosmθ・2pt+β
tanθ=(sinmθ・pt^2+cosmθ・2pt+β)/(cosmθ・pt^2-sinmθ・2pt+α), (α,β)は既知
を解いてtを求める。
(sinmθ・pt^2+cosmθ・2pt+β)=tanθ(cosmθ・pt^2-sinmθ・2pt+α)
a=(sinmθ-tanθcosmθ)・p
b=(cosmθ+tanθsinmθ)・p
c=β-tanθα
r^2=(cosmθ・pt^2-sinmθ・2pt+α)^2+(sinmθ・pt^2+cosmθ・2pt+β)^2
===================================
反対方向に回転させた場合(あるいはYを反転させてもよい)
X-α=[cosmθ,-sinmθ][pt^2]
Y-β=[sinmθ, cosmθ][2pt]
X=cosmθ・pt^2-sinmθ・2pt+α
Y=-sinmθ・pt^2-cosmθ・2pt-β,tは2次方程式の根の大きいほう
(rcosθ、rsinθ)と(rcos(π-2θ),rsin(π-2θ))=(-rcos2θ,rsin2θ)を結ぶ直線
Y=(rsin2θ-rsinθ)/(-rcos2θ-rcosθ)・(X-rcosθ)+rsinθ
との交点を求める
(Y-rsinθ)(-rcos2θ-rcosθ)=(rsin2θ-rsinθ)・(X-rcosθ)
(-sinmθ・pt^2-cosmθ・2pt-β-rsinθ)(-rcos2θ-rcosθ)=(rsin2θ-rsinθ)・(cosmθ・pt^2-sinmθ・2pt+α-rcosθ)
(sinmθ・pt^2+cosmθ・2pt+β+rsinθ)(rcos2θ+rcosθ)=(cosmθ・pt^2-sinmθ・2pt+α-rcosθ)(rsin2θ-rsinθ)
a={sinmθ(rcos2θ+rcosθ)-cosmθ(rsin2θ-rsinθ)}・p
b=[cosmθ(rcos2θ+rcosθ)+sinmθ(rsin2θ-rsinθ)}・p
c=(β+rsinθ)(rcos2θ+rcosθ)-(α-rcosθ)(rsin2θ-rsinθ)
===================================
(rcosθ、rsinθ)と(rcos(π-2θ),rsin(π-2θ))=(-rcos2θ,rsin2θ)の中点((rcosθ-rcos2θ)/2,((rsinθ+rsin2θ)/2)
からの距離の2乗
2Lと1+rの比較が問題となる
===================================