■素数と無限級数(その149)
1−1/2+1/3−1/4+・・・=log2
1−1/3+1/5−1/7+・・・=π/4
1−1/4+1/7−1/10+・・・=π/3√3+1/3・log2
それでは,
[Q]1−1/5+1/9−1/13+・・・=?
===================================
1−1/5+1/9−1/13+・・・=?
は
1/8・Σ{1/(n+1/8)−1/(n+1)}
−1/8・Σ{1/(n+5/8)−1/(n+1)}
と書くことができる.
一般に
Σ{1/(n+p/q)−1/(n+1)}
=π/2・cotpπ/q+log2q−2Σcos2pkπ/q・logsinkπ/q (0<k<q/2)
===================================
[1]p=1,q=8
Σ{1/(n+p/q)−1/(n+1)}=π/2・(√2+1)+log16−log16
[2]p=5,q=8
Σ{1/(n+p/q)−1/(n+1)}=−π/2・(√2+1)+log16−2{log(2+√2)}
1/8・Σ{1/(n+1/8)−1/(n+1)}
−1/8・Σ{1/(n+5/8)−1/(n+1)}
={π(√2+1)-log16+2{log(2+√2)}}/8
===================================