■もうひとつの14面体(その6)

【4】ケルビンの14面体とウィリアムズの14面体

 ケルビンの14面体(α-14面体)は,3対の合同な四角形の面と4対の合同な6角形の面とで囲まれています.最も簡単な場合は,6個の正方形と8個の正六角形とからなり,すべての辺の長さが等しいものが切頂八面体です.切頂八面体は16種ある準正多面体(アルキメデス体)のひとつです.

 α-14面体は,長い間,単一の多面体で空間を隙間なく分割しうる唯一のものと信じられてきました.面を平面にするという条件下にはこれは今日でも通用することです.しかし,その条件を外せば,空間充填14面体にはもう1種類あることを1968年になってウィリアムズが報告しています.これがβ-14面体ですが,この間,実に1世紀近い年月の隔たりがあります.

 β-14面体は,8個の合同な五角形と4個の合同な六角形と2個の合同な四角形をもち,それらの面は必ずしも平面である必要はありません.正方形の面は平面にできるのですが,その他の面はいずれも曲面(凸面,凹面,S字状の湾曲した曲面など)になります.

 便宜のため,α-14面体とβ-14面体の主要な幾何学的性質をまとめて表示しておきます.

         α-14面体         β-14面体

面の形と数   平面6辺形(8)       曲面5辺形(8)

        平面平行4辺形(4)     曲面6辺形(4)

        平面正方形または矩形(2)  平面正方形または矩形(2)

稜の形と数   直線(36)         曲線(24)

                       直線(12)

===================================

【5】ウィアの12面体・14面体

 ケルビンの14面体は100年以上もの間,最も効率よく空間を充填する多面体として最善の答でしたが,本当に表面積を最小化する多面体であるのかというと否定的であって,実はこの問題はいまでも未解決問題となっているのです.

 もし,体積が同じで形の異なる2種類の多面体を組み合わせてみたら,ケルビン問題の反例がみつかるのでは・・・.そして,1994年,アイルランドの物性物理学者,ウィアは合金構造をヒントにもっと面積が小さくなる解を発見しました.同じ体積の2種類の多面体による空間充填なのですが,不等辺五角形の面をもつ12面体(5角形12枚)と14面体(5角形12枚と6角形2枚)が1:3の割合で並ぶものです.

 もちろん,この12面体は正十二面体ではありませんし,14面体もケルビンの14面体ではありません.ウィアの空間充填では,ウィリアムズの14面体の場合と同様に,辺や面には微妙な曲がりが含まれています.また,ウィアの空間充填では,ウィリアムズの14面体よりも多くの五角形の面をもつという特徴もあげられます.

 そしてこれらの多面体の表面積はケルビンの14面体よりも0.3%小さいことが判明したのです.曲面の高精度計算がコンピュータでできるようになったことがこの新発見に繋がったのですが,辺や面を微妙に調節することによって空間充填が可能となるのです.

===================================

【6】空間充填における五角形面の利点

 β-14面体(4^25^86^4)では,α-14面体(4^66^8)に比較して辺が曲線になったり,面が曲面を含む点で幾何学的性質の単純さは劣りますが,五角形の面をもつという利点があります.

 平面に投射した形を考えてみると,β-14面体による空間充填は,スケールを大きくとることによって,5角形による平面充填配列に近づいていきます.この5角形とは正五角形ではなく,カイロのタイル貼りと呼ばれる歪んだ5角形によるタイル貼りのことであって,正方形と正三角形によるアルキメデスの平面充填形の双対として得られるものです.

 一方,α-14面体を平面のタイル張りに還元するには,かなり著しい変形を加えなければなりません.このことは,血管の分岐様式が二分岐になるためのモデルとして,多面体が奇数の辺をもつβ-14面体のほうが都合がよいことを意味していて,諏訪紀夫先生(故人)はβ-14面体の存在理由を非常に重要なものと考えておられます.

 β-14面体のほうが形の上で実際に近いとはいっても,それだけでモデルの優劣を判断するわけにはまいりません.しかし,分割多面体では5角形の面が最も多いのですが,α-14面体はまったく5角形の面をもちませんから,β-14面体のほうが空間分割のある側面をよく表していると考えることができます.

 ウィリアムズのβ-14面体(4^25^86^4)は単一の多面体で空間を隙間なく分割しうるのですが,2種類の多面体の組合せであるウィアの12面体(5角形12枚:5^12)と14面体(5角形12枚と6角形2枚:5^126^2)の場合も五角形面をもっています.

 また,空間充填多面体として12面体(5^12)と16面体(5^126^4)の2種類の組合せ,12面体(5^12),12面体(4^35^66^3),20面体(5^126^8)の3種類の組合せの知られているようです.

 ともあれウィアの極小曲面が最も境界面積が小さな形になって切るかという問題はまだ解決されていません.「同じ体積の泡が集まっているときに,境界面積が最小となる泡の形は何か?」は,泡の種類を増やせば面積をもっと減らすチャンスがあるのです.それで科学者たちは現在もより効率の良い空間分割法を探索し続けているのです.

===================================

[補]極小曲面と平均曲率一定曲面

 シャボン玉の丸い形や枠に張られた石けん膜の形の面白さは,表面積が最小になろうとする傾向のあらわれですが,石けん膜は「極小曲面(平均曲率が恒等的に0の曲面)」,シャボン玉は「平均曲率一定(≠0)曲面」と呼ばれる数学的曲面となっています.

 (問)互いに平行な2つの円形の枠に石けん膜を張ったとき,その形は?

 (答)カテナリー(極小曲面)

 (問)互いに平行な2つの円盤に石けん膜を張ったとき,その形は?

 (答)アンデュロイド(平均曲率一定曲面)

===================================