■四色問題(その9)
20世紀のうちに解決された悪名高き難問に,四色問題
「任意の平面地図は高々4色で色分けできるか?」
がある.5色で色分けできることはヒーウッドによって100年以上も前から知られていたが,四色問題が肯定的に解決されたのは1970年代後半のことで,アペルとハーケンはコンピュータを使ってこの証明を成し遂げた.四色問題の証明は場合分けの数が膨大で,コンピュータによる解析に依存せざるを得なかったのである.
3次元のn個の領域を塗り分けるにはn色必要な例を作ることができる.それに対して2次元では「どんな平面地図でも4色で塗り分けられる」ことが証明されたのだが,多くの数学者はこの証明においてコンピュータによる解析が本質的だと知ると落胆し,失望したと伝えられている.
その証明は1995年にロバートソンらによって改良されてかなり簡単になったとはいえ,いまだ手計算で証明を完成させた人はいない.ともあれ,四色問題がグラフ理論の発展に対する推進力となったことは確かである.
===================================
【1】オイラーの多面体定理
オイラーの多面体定理で示される制限からいえることとして,
F=f3+f4+f5+・・・
2E=3f3+4f4+5f5+・・・
を
6F−2E≧12
に代入すると
3f3+2f4+f5−f7−2f8−3f9−・・・≧12
地図のように2つの辺に囲まれた領域まで許すことにすると,この数え上げ公式は
4f2+3f3+2f4+f5−f7−2f8−3f9−・・・=12
となります.いずれにせよ,係数が1ずつ小さくなり,それが0となるf6は式中に現れません.
このことから,f3,f4,f5の少なくとも1つは0でない→多面体には3角形か4角形面か5角形面が少なくとも1つなければならない,同様に,多面体の少なくとも1つの頂点は3次か4次か5次でなければならない→すべての頂点の次数が6以上となることは不可能であり,必ず次数が5以下の頂点をもつことが導き出されます.これもオイラーが知っていた結果であるということです.
ここで,
(1)f2=f3=f4=0だとすると,少なくとも12個のf5がなければならないことになる
(2)多面体の面がすべてf5とf6であるならば,f5=12(切頂二十面体)
(3)多面体の面がすべてf4とf6であるならば,f4=6(切頂八面体)
(4)多面体の面がすべてf4,f6,f8であるならば,f4=f8+6(斜方切頂立方八面体)
これらの結果は極めて重要で,四色定理の証明の中核をなしています.
===================================
【2】ヒーウッドの公式
オイラーの公式は単純ですが,要はその使い方というわけで,たとえば,多面体には3角形か4角形面か5角形面が少なくとも1つなければならないことはもっと簡単に証明できます.
どの領域も少なくとも6つの領域で囲まれていると仮定すると
6f≦2e
また,このような問題を解くにあたっては,すべての交点で3本の境界線が会している地図だけを考えればよいので,
3v≦2e
これらをオイラーの公式に代入すると
v−e+f≦1/3e−e+2/3e=0≠2
となって矛盾を生じます.したがって,5個以下の隣接領域しかもたない領域が少なくともひとつあることになります.
平面や球面上に描かれた地図に関するオイラーの公式は
v−e+f=2
でしたが,トーラス上の地図に関するオイラーの公式は
v−e+f=0
です.
トーラスでは6個以下の隣接領域しかもたない領域が少なくともひとつあることを証明するために,どの領域も少なくとも7つの領域で囲まれていると仮定すると
7f≦2e
また,3v≦2eですから
v−e+f≦2/7e−e+2/3e=−1/21e≠0
という矛盾を引き出すことができます.
したがって,トーラスでは6個以下の隣接領域しかもたない領域が少なくともひとつあることになります.このことを利用すると,
「トーラス上のどんな地図でも7色で塗り分けられる」
ことが証明されます.ヒーウッドは実際に7色を必要とする例もあげています.
これを証明したヒーウッドはさらにg個の穴があいたトーラス上の地図に関するオイラーの公式
v−e+f=2−2g
を利用して
(1)2個の穴があいているトーラス上の地図はどれも8色で塗り分けられる
(2)3個の穴があいているトーラス上の地図はどれも9色で塗り分けられる
・・・・・・・・・・・・・・・・・・・・・・・・
(3)10個の穴があいているトーラス上の地図はどれも14色で塗り分けられる
に引き続いて,
(4)g個の穴があいているトーラス上の地図はどれもH(g)色で塗り分けられる
H(g)=[{7+√(1+48g)}/2]
を証明しました.
[・]はガウス記号で,
g:1,2,3, 4, 5, 6, 7, 8, 9,10
H:7,8,9,10,11,12,12,13,13,14
となるのですが,しかし,ヒーウッドはg≧2に対してそのような地図が実在することを示すことはできませんでした.そのため,この問題は「ヒーウッド予想」と呼ばれることになりました.
1968年,リンゲルとヤングスは,g個の穴のあいているトーラス上にこれだけの色を必要とする地図が存在することを証明したのですが,ヒーウッド予想(1890年)が最終的に証明されるまでには77年もの歳月が必要だったというわけです.
===================================