■ヴィーフェリッヒ素数(その14)
フェルマーの小定理より,pを素数とすると,pは常に2^(p-1)−1を割り切る.
2^(p-1)−1=0 (mod p)
[Q]p^2が2^(p-1)−1を割り切るような素数pはあるだろうか?
2^(p-1)−1=0 (mod p^2)
[A]ヴィーフェリッヒ素数はp=1093,3511が知られています.
2^1092−1は1093^2で割り切れる.
2^3510−1は3511^2で割り切れる.
一方,
2^(p-1)−1≠0 (mod p^2)
すなわち,ヴィーフェリッヒ素数でない素数は無限個あることが示されている(実際にはヴィーフェリッヒ素数はいまのところ1093と3511しか知られていない).
===================================