■ヴィーフェリッヒ素数(その9)
2^(p-1)=1 (mod p^2)を満たす素数。
フェルマーの最終定理:x^p+y^p=z^pが整数解をもてば、pは上の合同式を満たすことをヴィーフェリッヒは1909年に示した。
===================================
【2】ヴィーフェリッヒの定理
次のブレークスルーは,ヴィーフェリッヒの定理(1909年)です. 「フェルマー方程式x^p+y^p=z^pが非自明解をもつためには,pはヴィーフェリッヒ素数であることが必要である」
ヴィーフェリッヒ判定基準とは
(2^(p-1)−1)/p=0 (mod p)
すなわち,2^(p-1)−1はp^2で割り切れるというものです.フェルマーの小定理より(2^(p-1)−1)/pは整数となりますが,非常に稀にこの整数がpの倍数になることがあり,そのときpをヴィーフェリッヒ素数といいます.
ヴィーフェリッヒの定理
フェルマー方程式x^p+y^p=z^pが非自明解をもつためには,pはヴィーフェリッヒ素数であることが必要である.
(2^(p-1)−1)/p=0 (mod p)
ヴィーフェリッヒ素数はp=1093,3511が知られています.2つのヴィーフェリッヒ素数−1を2進数に変換すると
1092=10001000100
3510=110110110110
のように奇妙なパターンがみられるのだそうです.
ヴィーフェリッヒの定理により,フェルマーの最終定理の証明は驚くほど簡単になりました.6・10^9以下ではp=1093,3511だけがこの判定基準を満たし.xyzがpで割り切れない場合,この2つについてだけ調べればよいことになるからです.
===================================