■ソフィー・ジェルマン素数(その12)
ソフィー・ジェルマンがとった戦略はx^n+y^n=z^nの指数nについて1つ1つ確かめていくのではなく、たくさんのnについて一気に証明するというものでした。
p :3,5,7,11,13,17,19,23,29,31,
2p+1:7,11,15,23,27,35.39,47,59.63
素数 :o,o,x,o,x,x.x,o,o,x
ソフィー・ジェルマン素数:3,5,11,23,29,・・・
===================================
【1】ソフィー・ジェルマン素数
f(x)=x,g(x)=2x+1
の両方が素数となるような素数xはソフィー・ジェルマン素数と呼ばれていますが,それが無数にあるかどうかという問題もまだ解かれていません.なお,
「pがソフィー・ジェルマン素数のとき,フェルマーの方程式:
x^p+y^p=z^p
に整数解があれば,x,y,zのどれか一つはpで割れねばならない」という美しい定理を彼女は証明しています.
===================================
pがxyzの約数でないという条件の下で、フェルマーの最終定理が成り立つことを示したのです。
===================================