■ソフィー・ジェルマン素数(その12)

ソフィー・ジェルマンがとった戦略はx^n+y^n=z^nの指数nについて1つ1つ確かめていくのではなく、たくさんのnについて一気に証明するというものでした。

p :3,5,7,11,13,17,19,23,29,31,

2p+1:7,11,15,23,27,35.39,47,59.63

素数 :o,o,x,o,x,x.x,o,o,x

 

 ソフィー・ジェルマン素数:3,5,11,23,29,・・・

 

===================================

 

【1】ソフィー・ジェルマン素数

  

  f(x)=x,g(x)=2x+1

の両方が素数となるような素数xはソフィー・ジェルマン素数と呼ばれていますが,それが無数にあるかどうかという問題もまだ解かれていません.なお,

 「pがソフィー・ジェルマン素数のとき,フェルマーの方程式:

  x^p+y^p=z^p

に整数解があれば,x,y,zのどれか一つはpで割れねばならない」という美しい定理を彼女は証明しています.

 

===================================

 

pがxyzの約数でないという条件の下で、フェルマーの最終定理が成り立つことを示したのです。

 

===================================