■五次方程式の非可解性(その7)
【1】5次方程式への挑戦
5次方程式:
ax^5+bx^4+cx^3+dx^2+ex+f=0
の代数的解法,すなわち四則演算+,−,×,÷と根号√,3√,4√,・・・によって解を求めるという問題は,いまからほとんど4世紀も昔の問題です.
一般に,n次方程式:
anx^n+an-1x^(n-1)+・・・+ a1x+a0=0
に対してx’=x+an-1 /nan と変換(カルダノ変換)するとx^(n-1)の項が0である方程式に還元できます.3次方程式では2次の項,4次方程式では3次の項を欠いた方程式に変形しましたが,ではもっと低次の項の係数を0にできないか?と考えるのは自然な発想でしょう.
カルダノ・オイラー・フェラーリ・デカルトの解法は,いずれもカルダノ変換から説明される方法ですが,チルンハウスとその弟子たちは,
x^5+a1x^4+a2x^3+a3x^2+a4x+a5=0
に対して
y=x^4+b1x^3+b2x^2+b3x+b4
という変換を行い,うまくb1,・・・,b4を選ぶ方法を考えました(チルンハウス変換:1683年).
そうすることによって,4次の項と3次の項のない5次方程式が得られたのですが,さらに1843年にジラールは2次の項も消去できることを示しました.つまり,一般の5次方程式を
x^5+px+q=0
まで還元できることが判ったわけです(実際にこの作業を行うのは容易ではなく,コンピュータなしでは絶望的です).
この形は根と係数の関係を発見したジラールにちなんでジラールの標準形と呼ばれているのですが,ここでp=0ならば−qの5乗根としてxは求まります(q=0ならば4次方程式に帰着できます).しかし,さらにp=0にしようとすると,6次方程式を解く必要が生じて,問題がかえって難しくなってしまいました.
===================================