■円錐面の輪切り(その16)

 仕切り直し.

  y’=b^2(1−2x0/a^2)/2y0=m

===================================

 接線はy=mx−mx0+y0

  x=(y+mx0−y0)/m

 交点のy座標は

  (y+mx0−y0)^2/m^2a^2+y^2/b^2=k

  y^2(1/m^2a^2+1/b^2)+2y(mx0−y0)/m^2a^2+(mx0−y0)^2/m^2a^2−k=0

  y^2(b^2+m^2a^2)+2yb^2(mx0−y0)+b^2(mx0−y0)^2−km^2a^2b^2=0

の解で与えられる.

 この解をα,β(α<β)とすると,

  α+β=−2b^2(mx0−y0)/(b^2+m^2a^2)

  αβ={b^2(mx0−y0)^2−km^2a^2b^2}/(b^2+m^2a^2)

 X=(y+mx0−y0)/m−a(1−y^2/b^2)^1/2

 X=(y+mx0−y0)/m−a/b(b^2−y^2)^1/2

とおくと,面積は

  S=∫(α,β)Xdy=[(y^2+mx0y−y0y)/m−a/2b(y(b^2−y^2)^1/2+b^2arcsiny/b)](α,β)

===================================

 しかし,これも危うい方法である.方針転換を余儀なくされるが,極座標は使いにくいので,パラメータ表示してみたい.扇型から三角形を差し引く方法である.再度仕切り直し.

===================================