■正多面体の正多角形投影(その13)

4次元の場合は

距離2・・・1個

(1,1,1,1)→(0,0,0,2)

距離√3・・・4個(1の数が3のもの,このうち2つが正八角形を構成する)

距離√2・・・6個(1の数が2のもの,このうち2つが正八角形を構成する)

距離1・・・4個(1の数が1のもの,このうち2つが正八角形を構成する)

距離0 

(0,0,0,0)→(0,0,0,0)

===================================

単位円の直径は2であるから

正八角形は

(0,0)

(1/√2,-1/√2+1)(-1/√2,-1/√2+1)残差1-1/2-(√2-1)^2/2

(1,1),(-1,1)残差2-1-1=0

(1/√2,1/√2+1)(-1/√2,1/√2+1)残差3-1/2-(√2+1)^2/2

(0,2)残差4-4=0

で構成される。

[a,b,c,d]

[e,f,g,h]

[i,j,k,l]

[1/2,1/2,1/2,1/2]とおくと

a+b+c+d=0

e+f+g+h=0

i+j+k+l=0

これだけでは条件が足りない・・・d,h,lがわかればよいのだが

===================================