■正多面体の正多角形投影(その13)
4次元の場合は
距離2・・・1個
(1,1,1,1)→(0,0,0,2)
距離√3・・・4個(1の数が3のもの,このうち2つが正八角形を構成する)
距離√2・・・6個(1の数が2のもの,このうち2つが正八角形を構成する)
距離1・・・4個(1の数が1のもの,このうち2つが正八角形を構成する)
距離0
(0,0,0,0)→(0,0,0,0)
===================================
単位円の直径は2であるから
正八角形は
(0,0)
(1/√2,-1/√2+1)(-1/√2,-1/√2+1)残差1-1/2-(√2-1)^2/2
(1,1),(-1,1)残差2-1-1=0
(1/√2,1/√2+1)(-1/√2,1/√2+1)残差3-1/2-(√2+1)^2/2
(0,2)残差4-4=0
で構成される。
[a,b,c,d]
[e,f,g,h]
[i,j,k,l]
[1/2,1/2,1/2,1/2]とおくと
a+b+c+d=0
e+f+g+h=0
i+j+k+l=0
これだけでは条件が足りない・・・d,h,lがわかればよいのだが
===================================