■サイクロイドの計量(その1)

固定した直線上を円が滑らずに転がるとき,回転円の周上の固定点のなす軌跡がサイクロイドです.自転車のタイヤを転がせばタイヤの上の1点はサイクロイドを描きます.

 サイクロイドは回転角を媒介変数として回転円の半径をaとすると

  x=a(θ−sinθ),y=a(1−cosθ)

と書くことができます.

  dx/dθ=a(1−cosθ)=y,dy/dθ=asinθ

  d^2x/dθ^2=asinθ,d^2y/dθ^2=acosθ

  d^3x/dθ^3=acosθ,d^3y/dθ^3=−asinθ

より,

  dy/dx=sinθ/(1−cosθ)

  d^2y/dx^2=cotθ

  d^3y/dx^3=−tanθ

 サイクロイドという名前は1599年ガリレオによって与えられたのですが,ガリレオはサイクロイドが囲む面積が回転円の面積のちょうど3倍になることを発見することはできませんでした.

===================================

【1】まとめ

 サイクロイドの応用としては,ジェットコースターや時計ばかりではありません.昔の歯車の歯は滑りどめの凹凸に過ぎなかったのですが,最近の機械では大きな力を高速で伝達することが要求されます.歯車の歯形として円の伸開線(インボリュート歯形)が使われていますが,かつてはサイクロイド歯形が用いられていたという話を伺ったことがあります.

 サイクロイド関連の曲線の応用としては,たとえば,円の内側にある固定点が描く軌跡をトロコイドというのですが,先日完結した「n角の穴をあけるドリル」にはトロコイドが応用されています.また,回転円(半径r)が固定円(半径R)に接して滑ることなく転がっていくとき,回転円の周上の点の軌跡を考えます.回転円が固定円に外接するとき,その軌跡をエピサイクロイド,内接するとき,ハイポサイクロイドと呼びます.古代ギリシャの人々は固定円上の回転円を使って惑星の軌道を説明しました.

 サイクロイドはそもそもガリレオによって発見され,ホイヘンスによって振子時計の設計に使われ,そしてパスカルの積分法の研究にも貢献しています.サイクロイド弧が囲む面積は3πr^2(回転円の面積の3倍に等しい),弧長は8r(回転円に外接する正方形の周に等しい)になります.

===================================

(補)曲線Lのまわりに巻かれた糸があり,この糸をぴんと張ったままほどくと糸の自由端によって曲線Mが描かれるとします.MをLの伸開線(インボリュート),LをMの縮閉線(エボリュート)と呼びます.

 円の伸開線,すなわち円に巻きつけた糸の一端の軌跡は

  x=a(cosθ+θsinθ),y=a(sinθ−θcosθ)

と表され,歯車の歯形として工学に応用されています.

 サイクロイド:x=r(θ−sinθ),y=r(1−cosθ)の縮閉線は

  x=a(θ+sinθ),y=−a(1−cosθ)

です.ここで,θ=π+tとおけば   x=a(t−sint)+aπ,y=a(1−cost)−2a

ですから,もとのサイクロイドと合同なサイクロイドになることが示されます.

 サイクロイドの伸開線はそれと合同なサイクロイドですが,対数らせんの伸開線もそれと合同な対数らせんになります.

===================================