■数直線上の集合(その18)

 平面極座標(rn、θn)で表される点列を考える。

 とくに、(√n、2πn/τ^2)の場合が、フィボナッチらせん(別名・黄金らせん)である。

  rn=√n

は最初のn点が半径√nの円に含まれていることを意味する。

===================================

 フィボナッチらせんの最も顕著な性質は「点分布の一様性」である。

 つまり、一つのディリクレ領域の面積はほぼ一定となる。これは最も効率のよい配置と考えることができる理由である。

 α=2π/τ^2で作られるらせん分布の一様性にはそれ以外の角で作られたパターンと比べて著しい特徴がある。

 αが有理数で、α=M/Nと書けたとすると、(n+N)番目の点はすべてn番目の点と同一の動径方向をもつから、Nほんの放射状パターンになってしまう。

===================================