■カッシーニ曲線(その1)

【1】カッシーニ曲線

 2定点(−a,0),(a,0)からの距離の和が一定となる点の軌跡は楕円,差が一定の点の軌跡は双曲線です.また,商が一定の点は円(アポロニウスの円)を描きます.それでは積が一定の点はどのよう軌跡を描くでしょうか.

(答)はカッシーニ曲線.

  {(x+a)^2+y^2}{(x−a)^2+y^2}=c^2

  (x^2+y^2)^2−2a^2(x^2−y^2)=c^2−a^4

  r^4−2a^2r^2cos2θ+a^4=c^2

 2次の多項式f(x,y)=0すなわち楕円,放物線,双曲線が円錐を平面で切断したときの切り口として現れたように,カッシーニ曲線(4次の多項式)はトーラス(ドーナツ)の平面による切断面として現れることが知られています.cの変化に応じて曲線は4種類に移り変わるのですが,4種類とは凸卵形,つぶれた卵形(変曲点をもつ繭形),8の字型,2つに分かれたペアの卵形です.

===================================