■トーラスの展開図(その2)

【2】平面モデル

 球面S,輪環面T,クラインの壷K,射影平面Pの平面モデルはいずれも4角形でしたが,たとえば,2つ穴トーラス:2T=T#Tの平面モデルは何角形になるでしょうか?

 三角形分解定理(ラドー,1920年代)により,すべてのコンパクトな曲面は平面モデルで表現することができるのですが,2Tをa,b,c,dというラベルの付いた曲線に沿って切り開くと8角形の平面モデルが得られます.

 2つ穴トーラス面を真ん中で2つに分けると,トーラス面に穴のあいたものaba^(-1)b^(-1)xとxcdc^(-1)d^(-1)ができます.これらを切り開くとどちらも5角形となります.これをxで2つつなぎ合わせると辺xは内部に吸収され,8角形になるというわけです.

 同様に

  3T → 12角形

  4T → 16角形

  ・・・・・・・・・・・・

  100T → 400角形

===================================

【3】2次元多様体の分類定理(その2)

 基本的な曲面(球面S,輪環面T,クラインの壷K,射影平面P)の組み合わせを標準形曲面と呼びます.ここでは標準形曲面S,nT(n≧1),mP(m≧1)を取り扱うことにします.SとnTは向き付け可能,mPは向き付け不可能ですから,Sだけが孤立していますが,Sを0Tと約束するとnT(n≧0)は向き付け可能な標準形曲面となり,好都合です.

 また,クラインの壷Kは2つの射影平面の連結和2P=P#Pと同相です.T#PはK#Pと同相であり,したがって3Pとも同相になります.すなわち,クラインの壷Kは射影平面Pをつけることによってみかけ上そのねじれが解消され,トーラスTに射影平面Pがくっついた形になってしまうことは驚くべきことと考えられます.

 したがって,nT,mPを扱えばよいことになるのですが,以下にコンパクトな曲面の分類定理をまとめておきます.

[1]向き付け可能なコンパクトな曲面はmT(m≧0)と同相である.ただし,0Tは球面Sを意味するものとする.

[2]向き付け不可能なコンパクトな曲面はmP(m≧1)と同相である.

[3]これ以外の向き付け不可能なコンパクトな曲面は,P#mT,K#mT(m≧0)のような向き付け不可能な曲面と同相である.P#mT,K#mTを第2標準形曲面と呼ぶ.

===================================