■ファウルハーバーの問題(その17)
S1=Σk=n(n+1)/2
S2=Σk^2=n(n+1)(2n+1)/6
S3=Σk^3=n^2(n+1)^2/4
は多くの読者にとってお馴染みの公式であろう.さらに,
S4=Σk^4=n(n+1)(2n+1)(3n^2+3n−1)/30
S5=Σk^5=n^2(n+1)^2(2n^2+2n−1)/12
S6=Σk^6=n(n+1)(2n+1)(3n^4+6n^3−3n+1)/42
S7=Σk^7=n^2(n+1)^2(3n^4+6n^3−n^2−4n+2)/24
S8=Σk^8=n(n+1)(2n+1)(5n^6+15n^5+5n^4−15n^3−n^2+9n−3)/90
と続く.
===================================
【1】もうひとつのファウルハーバーの定理
ファウルハーバーは,ベキ和の公式
Ss=Σk^s=1^s+2^s+3^s+・・・+n^s
において,s=17まで計算して,
[1]sが奇数のとき,SsはS1の多項式で表されることを見出し,
[2]sが偶数のときもこのことが成り立つと予想した.
ヤコビはファウルハーバーの予想を証明し,
[3]sが偶数のときSsはS2で割り切れ,さらに
[4]Ss/S2はS1の多項式で表されることを示した.
たとえば,
S3=S1^2
S4=S2(6S1−1)/5
S5=(4S1^3−S1^2)/3
S6=S2(12S1^2−6S1+1)/7
sが偶数のときn(n+1)(2n+1)(多項式)/(整数),1以外の奇数のときn^2(n+1)^2(多項式)/(整数)と書くことができる.また,Σk^sは(s+1)次の多項式になり,最高次数の係数は1/(s+1)となる.
===================================