■ケプラーと正多面体(その5)
半径r3の円がある.その円に正三角形を外接させる.その三角形に半径R3の円を外接させる.その円に正方形を外接させる.その正方形に半径R4の円を外接させる.その円に正五角形を外接させる.その正五角形に半径R5の円を外接させる・・・.正多角形は外側にいくほど大きくなるが,無限に大きくなるか?
===================================
Rn/rn=1/cos(π/n)
ΠRi/ri=Π1/cos(π/i)
n→∞のとき,1/cos(π/n)→1となるのは,おなじみの内接(外接)する正多角形の辺の数→∞のとき,その多角形の周長の上限(下限)が円周の長さであることを表している.
ここで
R3=r4,R4=r5,R5=r6,・・・
より
Rn=r3Π1/cos(π/i) (i=3~n)
実際に無限乗積Π1/cos(π/i)の計算をしてみると,8.70に収束した.
Π1/cos(π/i)→8.70
Rn→r3×8.70
無限に大きくなっていくように思えるが,実際には上限があって,最初の円r3のおよそ9倍を超えることはできないのである.
===================================
an→Π1/cos(π/i)→8.70
に収束すると書いたことが気にかかっている.
an→Π1/cos(π/i)→およそ12
と記載した本もあり,収束値が大きく食い違っているからである.
多角形を円で囲む無操作を続けると,円の半径はどんどん大きくなり,やがて無限大になると思われるかもしれない.実際,円は当初きわめて速く大きくなるが,拡大の速度は徐々に低下し,円の半径は,無限乗積
R=1/cos(π/3)・1/cos(π/4)・1/cos(π/5)・1/cos(π/6)・・・=0.870003
に近づくのである.
===================================