■フラクタル次元(その23)

【3】実数のm進展開の分布とハウスドルフ次元

 実数のm進展開は0〜m−1の数字で表されますが,各数字(0〜m−1)の出現確率をp0,p1,・・・,pm-1

  Σpk=1,すなわち,p0+p1+・・・+pm-1=1

とします.

 0と1の間の数のうち,ほとんどの実数はm進展開したとき,各桁に現れる数字の出現確率が均等であることが知られています(正規数).

 また,F(p0,p1,・・・,pm-1)を[0,1)上の実数で,各桁に現れる数字(0〜m−1)の出現確率がp0,p1,・・・,pm-1であるような実数の集合とすると,Fのハウスドルフ次元dimFは

  dimF=−Σpklogpk/logm

で定義されます.正規数の集合F(1/m,・・・,1/m)のルベーグ測度1であり,したがって,その次元も1となります.

 また,0・log0=0と約束しておくことにして,[0,1]を3等分して中央の区間を取り除くという操作を繰り返します.このようにして得られる3分割カントル集合は最も有名なフラクタル集合の1例です.3分割カントル集合は3進展開の各桁に1の現れない数の集合F(1/2,0,1/2)ですが,そのハウスドルフ次元は

  log2/log3=0.6309・・・

となります.

===================================