■形の学校・空間充填多面体(その2)

ロシアの結晶学者フェドロフは,3次元空間において,平行移動だけで決まる本質的なボロノイ領域は,たった5種類しかないという構築原理発見した(1885年).この5種類のボロノイ領域とは,立方体,6角柱,菱形12面体,長菱形12面体,切頂8面体であって,「平行多面体」と総称される.

すなわち,平行多面体とは平行移動するだけで3次元空間を埋めつくすことのできる単独の多面体であって,230種類ある結晶もたった5種類のウィグナー・ザイツセルで概構成することができるのである.これら5種類の図形は5種類の正多面体(プラトン立体)ほどよく知られていないが,自然界のレゴ・ブロックと考えられる所以である.

===================================