■連鎖する形(その1)

半径r3の円がある.その円に正三角形を外接させる.その三角形に半径R3の円を外接させる.その円に正方形を外接させる.その正方形に半径R4の円を外接させる.その円に正五角形を外接させる.その正五角形に半径R5の円を外接させる・・・.正多角形は外側にいくほど大きくなるが,無限に大きくなるか?

===================================

  Rn/rn=1/cos(π/n)

  ΠRi/ri=Π1/cos(π/i)

 n→∞のとき,1/cos(π/n)→1となるのは,おなじみの内接(外接)する正多角形の辺の数→∞のとき,その多角形の周長の上限(下限)が円周の長さであることを表している.

 ここで

  R3=r4,R4=r5,R5=r6,・・・

より

  Rn=r3Π1/cos(π/i)   (i=3~n)

 実際に無限乗積Π1/cos(π/i)の計算をしてみると,8.70に収束した.

  Π1/cos(π/i)→8.70

  Rn→r3×8.70

 無限に大きくなっていくように思えるが,実際には上限があって,最初の円r3のおよそ9倍を超えることはできないのである.

===================================

  an→Π1/cos(π/i)→8.70

に収束すると書いたことが気にかかっている.

  an→Π1/cos(π/i)→およそ12

と記載した本もあり,収束値が大きく食い違っているからである.

 多角形を円で囲む無操作を続けると,円の半径はどんどん大きくなり,やがて無限大になると思われるかもしれない.実際,円は当初きわめて速く大きくなるが,拡大の速度は徐々に低下し,円の半径は,無限乗積

  R=1/cos(π/3)・1/cos(π/4)・1/cos(π/5)・1/cos(π/6)・・・=0.870003

に近づくのである.

===================================