■正単体らせん柱(その5)

 t=tanθとおくと,tannθ=ntanθは(その1)に掲げたような方程式となる.

 なお,t=tanθ/2とおくと

  cosθ=(1−t^2)/(1+t^2)

===================================

[1]n=2

  2/(1−tan^2θ)=2

  tan^2θ=0

  cosξ=cos2θ=(1−t^2)/(1+t^2)=1

[2]2次元の場合(n=3)

  (3−tan^2θ)/(1−3tan^2θ)=3

  tan^2θ=0

  cosξ=cos2θ=(1−t^2)/(1+t^2)=1

  ±をつけるべきかもしれない.

[3]3次元の場合(n=4)

  (4−4tan^2θ)/(1−6tan^2θ+tan^4θ)=4

  −4tan^2θ=−24tan^2θ+4tan^4θ

  5tan^2θ=tan^4θ

  tan^2θ=5

  cosξ=cos2θ=(1−t^2)/(1+t^2)=−2/3

[4]4次元の場合(n=5)

  (5−10tan^2θ+tan^4θ)/(1−10tan^2θ+5tan^4θ)=5

  (−10tan^2θ+tan^4θ)=(−50tan^2θ+25tan^4θ)

  40tan^2θ=24tan^4θ

  tan^2θ=5/3

  cosξ=cos2θ=(1−t^2)/(1+t^2)=−1/4

===================================