■同じ円に内接するいくつかの正多角形(その4)
(その3)の続き.
cosπ/7+cos3π/7+cos5π/7=1/2
=(a^2+b^2+c^2)/2R^2−3=1/2
a^2+b^2+c^2=7R^2
cosπ/7・cos3π/7+cos3π/7・cos5π/7+cos5π/7・cosπ/7=−1/2
(c^2/2R^2−1)(b^2/2R^2−1)+(b^2/2R^2−1)(a^2/2R^2−1)+(a^2/2R^2−1)(c^2/2R^2−1)=−1/2
(c^2−2R^2)(b^2−2R^2)+(b^2−2R^2)(a^2−2R^2)+(a^2−2R^2)(c^2−2R^2)=−2R^4
a^2b^2+b^2c^2+c^2a^2−4R^2(a^2+b^2+c^2)+12R^4=−2R^4
a^2b^2+b^2c^2+c^2a^2=14R^4
cosπ/7・cos3π/7・cos5π/7=−1/8
(c^2/2R^2−1)(b^2/2R^2−1)(a^2/2R^2−1)=−1/8
(c^2−2R^2)(b^2−2R^2)(a^2−2R^2)=−R^6
a^2b^2c^2−2R^2(b^2c^2+c^2a^2+a^2b^2)+4R^4(a^2+b^2+c^2)−8R^6=−R^6
a^2b^2c^2−28R^6+28R^6−8R^6=−R^6
a^2b^2c^2=7R^6
abc=√7R^3
1/a^2+1/b^2+1/c^2
=(a^2b^2+b^2c^2+c^2a^2)/a^2b^2c^2=14/7R^2=2/R^2
===================================