■東京オリンピックのエンブレム(その3)
周期的な平面充填に対して,平行移動の周期がない非周期的平面充填についても多くの研究がなされています.現在のところ,1974年に,イギリスの数理物理学者ペンローズの発見した2種類の菱形を組み合わせて平面を隙間なく,かつ,非周期的に敷きつめるものが最も構成要素の少ないものです.ペンローズタイルと呼ばれるこの敷きつめかたは,局所的には正五角形のような5重の対称性がありますが,全体としては対称性をもちません.
===================================
P1: 正五角形,星形正五角形,菱形,帽子形の4種類の基本図形からできている。その後,ペンローズは4種類の基本図形を2種類に減らした.
P2: 凧と矢。魚の尻尾みたいな凹四角形と凧形(凸四角形)の2つの構成要素からなる。矢の方が多くて黄金比に近づいていく.両者の面積比も黄金比である.
P3: 太った菱形(72°,108°)とやせた菱形(36°,144°)2種類の菱形を組み合わせ。最小の内角は36°であり,他の角はすべてその整数倍で,太めの菱形と細めの菱形の面積比は黄金比φになっています.また,1辺の長さを1とすると太めの菱形の対角線の長さはφ,細めの菱形の対角線の長さは1/φ,さらに,太めの菱形と細めの菱形の個数の比もφとなり,5回対称性のなかには黄金比φが潜んでいます.
P1+P3
===================================