■高次元の正多面体(その55)

 再度まとめておきたい.

[1]n次元正単体αnにおいて,k次元胞に接する(それを含む)m次元胞(m>k)は,双対を考えて,n-k次元胞内のn-m次元胞と同数,

  (n-k,n-m)

が得られます.

[2]n次元正軸体βnにおいて,k次元胞に接する(それを含む)m次元胞(m>k)は,2項係数を使って,

  2^m-k(n-1-k,n-1-m)=2^m-k(n-1-k,m-k)

です.

[3]n次元立方体γnにおいて,k次元胞に接する(それを含む)m次元胞(m>k)は,双対を考えて,n-k次元胞内のn-m次元胞と同数,

  (n-k,n-m)

が得られます.

===================================

[まとめ]

 高次元準正多胞体において,頂点に集まるn-1次元胞については完全に理解できたが,頂点に集まるn-2次元以下の胞については,まだ理解が及んででいない.これが利用できればよいのであるが、・・・

===================================