■高次元の正多面体(その13)
【2】双対性とルート系
3次元には5つの正多面体(プラトン立体)がある.リストアップすると,正4面体,立方体,正8面体,正12面体,正20面体である.正4面体はそれ自身と双対であり,立方体は正8面体と,正12面体は正20面体と双対である.
4次元空間の正多胞体
境界多面体 頂点数 双対性 3次元対応
5胞体 正4面体 5 自己双対(非中心対称) 正4面体
8胞体 立方体 16 16胞体と双対 立方体
16胞体 正4面体 8 8胞体と双対 正8面体
24胞体 正8面体 24 自己双対(中心対称)
120胞体 正12面体 600 600胞体と双対 正12面体
600胞体 正4面体 120 120胞体と双対 正20面体
4次元には6種類の正多胞体がある.正8胞体(4次元立方体)のほか,
正5胞体(4次元正4面体:自己双対)
正16胞体(4次元正8面体)
正24胞体(相当する正多面体はない:自己双対)
正120胞体(4次元正12面体)
正600胞体(4次元正20面体)
である.正8胞体と正16胞体,正120胞体と正600胞体は互いに双対,正5胞体と正24胞体はそれぞれ自分自身に双対である.
n次元空間の正多胞体(n≧5)
境界胞体 頂点 双対性 対応
(n+1)胞 n胞体 n+1 自己双対 正4面体・5胞体
2n胞体 (2n−2)胞体 2^n 2^n胞体 立方体・8胞体
2^n胞体 n胞体 2n 2n胞体 正8面体・16胞体
双対性からみて,正4面体,正6面体,正8面体の多次元への拡張はわかりやすいと思われるが,3次元空間の正12面体,正20面体,4次元空間の24胞体,120胞体,600胞体は,より高次元においては対応するものをもたない.しかし,それよりも,三次元の場合はこれらの他に2つの正多面体<正十二面体と正二十面体>があり,四次元の場合は他に3つ<正24胞体,正120胞体,正600胞体>あるといったほうがわかりやすいだろう.
===================================
ここで最も気になるのが正24胞体である.正24胞体に相当する3次元正多面体はない.なぜかというと,正24胞体は自己双対かつ中心対称であり,3次元空間でそれに対応する正多面体はないからである.
すなわち,正24胞体(24胞,正3角形のみからなる96面,96辺,24頂点)こそが,四次元特有の物体であると考えられるのであるが,正24胞体は,四次元空間で三次元空間の立方体にあたる正八胞体(8胞,24面,32辺,16頂点)と正八面体にあたる正十六胞体(16胞,32面,24辺,8頂点)を重ねてできることから,その意味で4次元版の菱形十二面体に相当する.
24胞体は,すべての次元を通じて,単体以外の唯一の自己双対な正則胞体であって,例外中の例外といってもよいものであろう.この24胞体の対称性を,鏡映で生成される既約な有限群(ルート系)との関係でみても興味深いものがある.
===================================