■18世紀における微積分(その13)

 ところで,平面上の閉曲線Cと平行な直線族との交点によって定まる線分の中点の軌跡は直線(線分である)という幾何学的性質を考える.円がこの性質をもつことは明らかであるが,この性質をもつための必要十分条件は楕円であることである.この性質は双曲線に一般化できるが,放物線では成り立たない.

[基本原理]2次曲線Γ上に定点P0を定める.Γ上の任意の点Pに半直線P0Pを対応させ(P0自身にはそこでの接線を対応させ),P0Pが正の実軸となす傾き(偏角の正接)をtとすると,Γを表す2次式の座標(x,y)はtの有理関数として表すことができる.

という性質は放物線でも成り立つのだろうか?

===================================