■チュドノフスキーの定理と超越数(その26)

【7】超越数

 

 古代ギリシャのピタゴラス学派は√2や黄金比を発見し,それらが有理数ではないことを知って驚きましたが,超越数の研究が本格的に始まったのは,1844年,リューヴィルによる超越数の発見以後のことです.

 

 リューヴィルは

  2^(-1!)+2^(-2!)+2^(ー3!)+・・・+2^(-n!)+・・・ が超越数であること,すなわち,超越数の存在をはじめて示したのです.後にカントールは,ほとんどの数は超越数であることを証明しています.

 

 1873年,エルミートは

  e=1+1/1!+1/2!+・・・+1/n!+・・・

が超越数であることを証明しました.これはリューヴィル数のような人為的に作った数ではない最初の超越数です.

 

 リンデマンは,エルミートの方法を一般化して,πの超越性を証明するのですが,リンデマンの定理(1882年)より,

  e,π,e^(√2),e^α,log2,logβ

   (α,βは代数的数で,α≠1,β≠1)

の超越性が導かれます.

 

 πは超越数ですから√πも超越数なのですが,したがって,√πは代数方程式の解とはなりえず,ギリシャの三大作図問題のひとつ,円積問題(円の正方形化問題)は作図不能となるのです.また,これにより,指数関数:y=exp(x)は,点(0,1)を除き代数的点を通ることができないことになるのですが,指数曲線や対数曲線が超越曲線と呼ばれる所以です.

 

 1900年,ヒルベルトはパリの国際数学者会議において,2^(√2)が超越数であるかどうかを当時の数学の問題のひとつとしました(ヒルベルトの第7問題).この問題は,「0または1でない代数的数αと有理数でない代数的数βに対し,α^βが超越数であることを示せ」というものですが,1934年,ゲルフォントとシュナイダーによって独立に,肯定的に解決されました.

 

 その結果,

  2^(√2),e^π,α^β,log102,logba

がいずれも超越数であることが判明しました.なお,

  e^π=(-1)^(ーi)

は,ゲルフォント・シュナイダーの定理によって超越数なのですが,

  π^e,π^π,e^e

は有理数かどうかもわかっていませんし,π+eは無理数かどうかも知られていません.

 

 ついでに述べますと,1929年,マーラーは

  2^(-2^1)+2^(-2^2)+2^(ー2^3)+・・・+2^(-2^n)+・・・

の超越性を示し(マ−ラーの定理),さらに1961年には,自然数を順に並べて得られる正規10進法小数(チャンパーナウン数)

  0.12345678910111213・・・

が超越数であることを示しました.

 

 また,Γ(1/2)=√πは超越数ですが,ネステレンコの定理より,

  Γ(1/3),Γ(1/4)

も超越数であることが導かれます.

===================================