■円周等分と正17角形(その82)
もし,仮に加法の素因数分解を考えれば,たとえば,
10=3+7=5+5=2+3+5=・・・
と幾通りもの素因数分解が考えられるところである.(p(10)=41通りの方法がある.)
それに対して,乗法の素因数分解は順序の違いを除けば1通りしかないというのが「算術の基本定理」である.
10=2・5=5・2
物質の世界において,原子が分裂することは一大事であるが,数の世界において,素数が分裂することは一大事である.たとえば,
a+ib√5 (a,bは整数)
の形の数の世界を考えると,この世界では
21=3×7=(4+i√5)(4−i√5)
のように素因数分解の一意性が成り立たない.
Z(i),Z(√−2),Z(√2),Z(√3),Z(√6)
など,Z(√m)という形の環(mは平方因子をもたない整数)でユークリッド整域になるものは20個くらいしかないことが知られていることを補足しておきたい.そこには大切な法則ながあるに違いない.
===================================
Q(i)の整数環は一意分解整域である.つまり,どの整数a+biも素数の積で,順序は無視して一通りに表される.さらにこの環は整除のアルゴりズムが定義されるユークリッド整域である.
整数環Zもユークリッド整域であり,したがって一意分解整域である.Zはn=1の円分体Q(ξn)の整数環と考えられる.
虚2次体の単数が±1でないものが2つある.
Q(i)→±1,±i
Q(ω)→((−1+i√3)/2))^j,j=0〜5
虚2次体Q(√−d)の類数が1であるdは9個ある.
d=1,2,3,7,11,19,42,67,163
この体の整数は,素数の積で順序は無視して一通りに表される.ガウスはこの9個をしっていたが,他にはないということがわかったのは1966年になってからである.後半の4つ,d=19,42,67,163に対し,Q(√−d)の整数環はユークリッド整域ではないので注意.
虚2次体Q(√−d)の類数が2となるdは9個ある.
d=5,6,10,13,15,22,35,37,51,58,91,115,123,187,235,267,403,427
===================================
Q(√−2)の整数環はユークリッド整域であり,したがって一意分解整域である.
Q(√−3)の整数環はユークリッド整域であり,したがって一意分解整域である.
Q(√−6)の類数は2.Q(√6)の整数環はユークリッド整域であり,したがって一意分解整域である.
Q(√−7)の整数環はユークリッド整域であり,したがって一意分解整域である.
Q(√−11)の整数環はユークリッド整域であり,したがって一意分解整域である.
Q(√−13)の類数は2.
Q(√−15)の類数は2.
Q(√−19)の整数環は一意分解整域であるが,ユークリッド整域ではない.
Q(√−22)の類数は2.
Q(√−35)の類数は2.
Q(√−37)の類数は2.
Q(√−43)の整数環は一意分解整域であるが,ユークリッド整域ではない.
Q(√−51)の類数は2.
Q(√−58)の整数環はユークリッド解整域である.
Q(√−67)の整数環は一意分解整域であるが,ユークリッド整域ではない.
Q(√−91)の類数は2.
Q(√−115)の類数は2.
Q(√−123)の類数は2.
Q(√−163)の類数は1.d=163はQ(√−d)の類数が1である最大のd.
Q(√−187)の類数は2.
Q(√−235)の類数は2.Q(√235)の類数は6.d=235はQ(√d)の類数が6である最小のd.
Q(√−267)の類数は2.
Q(√−403)の類数は2.
Q(√−427)の類数は2.d=427はQ(√−d)の類数が2である最大のd.
===================================