■円周等分と正17角形(その73)

 円分体Q(ξn)の整数が素数の積として1通りに表されるn(n≠2, mod4)は次の30個である。

  n=1,3,4,5,7,8,9,11,12,13,15、16,17,19、20.21,24,25.27,28,32,33,35,36,40,44,45,48,60,84

 円分体Q(ξn)の整数環は

  n=1,3,4,5,7,8,9,11,12,13,15、20.24のとき、ユークリッド整域であり、したがって、一意分解整域であるが、

  n=32のとき、一意分解整域であるがユークリッド整域ではない

====================================

 円分体Q(ξ16)の整数環は一意分解整域である。

====================================

 円分体Q(ξ17)の整数環は一意分解整域である。

====================================

 円分体Q(ξ19)の整数環は一意分解整域である。

====================================

 円分体Q(ξ20)の整数環は一意分解整域である。

====================================

 円分体Q(ξ21)の整数環は一意分解整域である。

====================================

 円分体Q(ξ24)の整数環はユークリッド整域であり、したがって、一意分解整域である。

====================================

 円分体Q(ξ25)の整数環は一意分解整域である。

====================================

 円分体Q(ξ27)の整数環は一意分解整域である。

====================================

 円分体Q(ξ28)の整数環は一意分解整域である。

====================================