■チュドノフスキーの定理と超越数(その11)
ガンマ関数のn重公式
ΠΓ(x+(k-1)/n)=n^(1/2ーnx)(2π)^(n-1)/2Γ(nx)
と三角関数の公式を比較してみよう.
===================================
【1】ガンマ関数の乗法公式
[1]倍数公式
Γ(x/2)Γ((x+1)/2)=π^(1/2)Γ(x)/2^(x-1)
Γ(x)Γ(x+1/2)=(2π)^(1/2)Γ(2x)/2^(2x-1/2)
[2]三重公式
Γ(x)Γ(x+1/3)Γ(x+2/3)=2πΓ(3x)/3^(3x-1/2)
[3]n重公式
ΠΓ(x+(k-1)/n)=n^(1/2ーnx)(2π)^(n-1)/2Γ(nx)
===================================
【2】正弦・余弦の積公式
正弦・余弦の和公式はフーリエ級数との関連で研究された歴史がある.一方,和公式ほどよく知られていないが,正弦・余弦の積公式としていろいろな公式が登場してくる.ここでは証明は省いたが,複素数を使って証明するのが一番の近道であろう.
Πsinkπ/n=sinπ/n・・・sin(n−1)π/n
=n/2^(n-1)
Πsin(θ+kπ/n)
=sin(θ+π/n)・・・sin(θ+(n−1)π/n)
=sinnθ/2^(n-1)sinθ
ここで,θ→θ−π/2nと置き換えれば
Πsin(θ+(2k−1)π/n)=cosnθ/2^(n-1)
θ=0とおけば
Πsin((2k−1)π/n)=1/2^(n-1)
また,θ=π/2とおけば
Πcoskπ/n=sin(nπ/2)/2^(n-1)
などを導き出すことができる.
===================================