[1]x^2-dy^2=±1→(x^2+dy^2)^2-d(2xy)^2=1
[2]x^2-dy^2=±2→{(x^2+dy^2)/2}^2-d(xy)^2=1
[2]x^2-dy^2=4
2|x→{(x^2-2)/2}^2-d(xy/2)^2=1
not 2|x→{x(x^2-3)/2}^2-d(y(x^2-1)/2)^2=1
[4]x^2-dy^2=-4
→(x^2+2)/2{(x^2+2)^2-3}^2-d(xy/2){(x^2+2)^2-1}^2=1
===================================