■ポール・エルデス・離散数学の魅力(その69)

双子素数予想とは、無限に多くのnにおいて、

  pn+1-pn=2

というものである

 2013年の5月にニューハンプシャー大学の数学者ツァンが,差が7千万以下の異なる素数の組が無限個存在するという証明をして,数学者たちを驚かせた.

  pn+1-pn<=70000000

 「7千万」を「2」に変更できれば双子素数予想の解決になるというわけであるが,画期的な報告はいってもまだまだ遠い・・・.とはいえ,ある一定の数だけ離れた素数のペアが存在するという報告はこれが初めてであった.

 同年,メイナードは「7千万」を「600」まで下げた.さらにメイナードは「270」まで下げたのであるが,エリオット・ハルバーシュタム予想が正しければ12、まで下げられるという.

===================================