■原始根とガウス和(その21)

 正弦・余弦の積公式を訂正.

===================================

Πsinkπ/n=sinπ/n・・・sin(n−1)π/n=n/2^(n-1)

Πsin(θ+kπ/n)

=sin(θ+π/n)・・・sin(θ+(n−1)π/n)

=sinnθ/2^(n-1)sinθ

 ここで,θ→θ−π/2nと置き換えれば

Πsin(θ+(2k−1)π/2n)=cosnθ/2^(n-1)

θ=0とおけば

  Πsin((2k−1)π/2n)=1/2^(n-1)

また,θ=π/2とおけば

Πcoskπ/2n=sin(nπ/2)/2^(n-1)

などを導き出すことができる.

===================================

 肝心の公式は,k=1〜[(n−1)/2]として

Πsin(kπ/n)=√n/2^(n-1)/2

  sinπ/7・sin2π/7・sin3π/7=√7/8

=sinπ/7・sin3π/7・sin5π/7

===================================