■原始根とガウス和(その21)
正弦・余弦の積公式を訂正.
===================================
Πsinkπ/n=sinπ/n・・・sin(n−1)π/n=n/2^(n-1)
Πsin(θ+kπ/n)
=sin(θ+π/n)・・・sin(θ+(n−1)π/n)
=sinnθ/2^(n-1)sinθ
ここで,θ→θ−π/2nと置き換えれば
Πsin(θ+(2k−1)π/2n)=cosnθ/2^(n-1)
θ=0とおけば
Πsin((2k−1)π/2n)=1/2^(n-1)
また,θ=π/2とおけば
Πcoskπ/2n=sin(nπ/2)/2^(n-1)
などを導き出すことができる.
===================================
肝心の公式は,k=1〜[(n−1)/2]として
Πsin(kπ/n)=√n/2^(n-1)/2
sinπ/7・sin2π/7・sin3π/7=√7/8
=sinπ/7・sin3π/7・sin5π/7
===================================