■五芒星と掛谷の問題(その231)

【4】平面代数曲線

 x,yの多項式:f(x,y)=0で与えられている曲線を代数曲線,多項式の次数をこの曲線の次数と呼びます.次数が2より大きい代数曲線は尖点や自己交差点のような特異点をもつこともあります.

 3次曲線とはf(x,y)=0が2変数x,yの3次あるいは3次以下の方程式で与えられた曲線です.3次曲線の例としては,ディオクレスのシッソイド(x^3+xy^2=y^2)があげられますが,これは古代ギリシアにおいて立方体倍積問題に用いられた曲線です.また,

  y=x^3+x^2+x+1

  y^3=xy^2−2x^2y+y−3

なども3次曲線で,一般式の項数は10になります.そこで,・・・

(Q)平面内n次曲線f(x,y)=0の一般式の項数は?

(A)3Hn=n+2Cn=(n+2)(n+1)/2

 2次曲線の分類については,3種類の円錐曲線,すなわち楕円,双曲線,放物線になることは既に述べたとおりですが,同じことをもっと高次の曲線・曲面に対して考えるのは自然なことでしょう.3次曲線の分類には,2次曲線とは異なった種類の難解さが要求されましたが,ニュートンはあらゆる場合を考察して,最終的に3次曲線は全部で78種類が必要であることを示すに至り,さらに3次曲線の一般式が5個の標準形に帰することを示しました.

 ニュートンの3次曲線の分類に引き続いて,オイラーは4次平面曲線の分類を企てましたが,可能な場合の数が非常に多いという理由で断念しています.この問題に対する答えは長い間知られていなかったのですが,プリュッカーが19世紀に4次曲線の152の型を数え上げることによって解かれました.

 また,一直線上にない3点を通る2次曲線,4点を通る3次曲線はただひとつ存在しますが,それは座標軸の方向が定まっている場合:

  y=ax^2+bx+c,y=ax^3+bx^2+cx+d

のようにy=f(x)の場合であって,一般には,平面上の任意の位置にある5点が唯一の円錐曲線を決定します.ニュートンは「プリンキピア」のなかで5点を通る円錐曲線の作図法などを案出しながら壮大な天体力学を展開しています.

 n次平面代数曲線の方程式f(x,y)=0は,(n+1)(n+2)/2個の係数をもっていますが,fに定数を掛けても曲線は変わりませんから,n次曲線はn(n+3)/2個のパラメータに依っていることになります.そこで,平面内に与えられたn(n+3)/2個の点(xi,yi)を通るという条件によって曲線を決定するという問題が自然に提起されます.ニュートンはこうした研究を応用して,2次曲線上の5点,3次曲線上の7点が与えられた場合にこれを作図する方法を見いだしたのです.

===================================