■五芒星と掛谷の問題(その213)
(その39)をやり直し
(1,R)を焦点とする楕円・放物線・双曲線(x^2/a^2+y^2/b^2=1,y^2=4px,x^2/a^2-y^2/b^2=1)を求めたい
軸はy=tan(mθ)x
(1,0),(cos2mθ,sin2mθ)を通る。
(x,y)を標準的な座標(x^2/a^2+y^2/b^2=1,y^2=4px,x^2/a^2-y^2/b^2=1)とすると
X-1=[cosmθ,-sinmθ][x]
Y-R=[sinmθ, cosmθ][y]
y^2=4px,x=pt^2,y=2pt,(p+α)^2=1+R^2であってp^2=1+R^2ではない
(x1,y1)における接線はy1y=2p(x+x1)
y=0→x=-x1
(-x1,0)から(x1,y1)までの距離は1
(p,0)から(x1,y1)までの距離はR・・・この場合Rでも円の場合と同じであるR=tan(mθ)=cot(θ/2)
cos(mθ)=sin(θ/2)
sin(mθ)=cos(θ/2)
4x1^2+y1^2=1
(x1-p)^2+y1^2=R^2
(x1-p)^2+1-4x1^2=R^2
p^2-2x1p-3x1^2+1=R^2
cos(mθ)=2x1→pが求まる,x1=cos(mθ)/2,y1=sinmθ
p^2-cos(mθ)p-3/4・cos(mθ)^2+1=tan(mθ)^2=-1+sec(mθ)^2
p^2-cos(mθ)p-3/4・cos(mθ)^2-sec(mθ)^2-2=0
p=1/2・(cos(mθ)+{cos(mθ)^2+3cos(mθ)^2+4sec(mθ)^2+8}^1/2)
===================================
X-α=[cosmθ,-sinmθ][x]
Y-β=[sinmθ, cosmθ][y]
(X,Y)=(1,0),(cos2mθ,sin2mθ)を通るようにtを決める。
これは誤りである。(p,0)→(1,R)
(x1,-y1)=(cos(mθ)/2,-sinmθ)→(1,0)
(x1,y1)=(cos(mθ)/2,sinmθ)→(cos2mθ,sin2mθ)
1-α=cosmθcos(mθ)/2+sin(mθ)^1=1-cos(mθ)^2/2,α=cos(mθ)^2/2
0-β==sinmθcos(mθ)/2-cosmθsin(mθ),β=sinmθcos(mθ)/2
cos2mθ-α=cosmθcos(mθ)/2-sin(mθ)^1
sin2mθ-β==sinmθcos(mθ)/2+cosmθsin(mθ)・・・OK
反対方向に回転させた場合(あるいはYを反転させてもよい)
X-α=[ cosmθ,sinmθ][x]
Y-β=[-sinmθ,cosmθ][y]
(x1,y1)=(cos(mθ)/2,sinmθ)→(1,0)
(x1,- y1)=(cos(mθ)/2,-sinmθ)→(cos2mθ,-sin2mθ)
1-α=cosmθcos(mθ)/2+sin(mθ)^1=1-cos(mθ)^2/2,α=cos(mθ)^2/2
0-β==-sinmθcos(mθ)/2+cosmθsin(mθ),β=-sinmθcos(mθ)/2
cos2mθ-α=cosmθcos(mθ)/2-sin(mθ)^1
-sin2mθ-β==-sinmθcos(mθ)/2-cosmθsin(mθ)・・・OK
この曲線は
X-α=[ cosmθ,sinmθ][x]
Y-β=[-sinmθ,cosmθ][√4px]
α=cos(mθ)^2/2
β=-sinmθcos(mθ)/2
===================================
(rcosθ、rsinθ)と(rcos(π-2θ),rsin(π-2θ))=(-rcos2θ,rsin2θ)を結ぶ直線
Y=(rsin2θ-rsinθ/(-rcos2θ-rcosθ)・(X-rcosθ)+rsinθとの交点を求めたいのであるが
その前にrが不明である。
rは
X-α=[cosmθ,-sinmθ][x]
Y-β=[sinmθ, cosmθ][-√4px]
とY=tan(θ)Xとの交点(rcosθ、rsinθ)から求めることができる,α=cos(mθ)^2/2,β=sinmθcos(mθ)/2
rcosθ-α=cosmθ・x+sinmθ・√4px
rsinθ-β=sinmθ・x-cosmθ・√4px
√4pxを消去すると
√4px=(rcosθ-α-cosmθ・x)/sinmθ
rsinθ-β=sinmθ・x-cosmθ・(rcosθ-α-cosmθ・x)/sinmθ
しかし、これではxが未知なのでrが求められない.
同時に消去しなければならない。→rが求められない.
===================================
X-α=[cosmθ,-sinmθ][pt^2]
Y-β=[sinmθ, cosmθ][2pt]
rcosθ-α=cosmθ・pt^2+sinmθ・2pt
rsinθ-β=sinmθ・pt^2-cosmθ・2pt
rcosθ=cosmθ・pt^2+sinmθ・2pt+α
rsinθ=sinmθ・pt^2-cosmθ・2pt+β
tanθ=(sinmθ・pt^2-cosmθ・2pt+β)/(cosmθ・pt^2+sinmθ・2pt+α)=(cos(θ/2)・pt^2-sin(θ/2)・2pt+β)/(sin(θ/2)・pt^2+cos(θ/2)・2pt+α)
を解いてtを求める。
r^2=(sin(θ/2)・pt^2+cos(θ/2)・2pt+α)^2+(cos(θ/2)・pt^2-sin(θ/2)・2pt+β)^2からrが求められる
===================================
(rcosθ、rsinθ)と(rcos(π-2θ),rsin(π-2θ))=(-rcos2θ,rsin2θ)を結ぶ直線
y=(rsin2θ-rsinθ/(-rcos2θ-rcosθ)・(x-rcosθ)+rsinθ
(rcosθ、-rsinθ)と(1,0)を結ぶ直線
y=(rsinθ)/(1-rcosθ)(x-rcosθ)-rsinθ
の交点を求める
(rsin2θ-rsinθ)/(-rcos2θ-rcosθ)・(x-rcosθ)-(rsinθ)/(1-rcosθ)・(x-rcosθ)=-2rsinθ
{(rsin2θ-rsinθ)(1-rcosθ)-(rsinθ)(-rcos2θ-rcosθ)}・(x-rcosθ)=-2rsinθ(-rcos2θ-rcosθ)(1-rcosθ)
ここで、n=3の場合も計算できることになる。
{(2cosθ-1)(1-rcosθ)+r(cos2θ+cosθ)}・(x-rcosθ)=2r(cos2θ+cosθ)(1-rcosθ)
{2cosθ-1-2r(cosθ)^2+rcosθ+2r(cosθ)^2-r+rcosθ)}・(x-rcosθ)=2r(cos2θ+cosθ)(1-rcosθ)
{2cosθ-1+2rcosθ-r}・(x-rcosθ)=2r(cos2θ+cosθ)(1-rcosθ)
{2cosθ(1+r)-(1+r)}・(x-rcosθ)=2r(cos2θ+cosθ)(1-rcosθ)
(2cosθ-1)(1+r)・(x-rcosθ)=2r(cosθ+1)(2cosθ-1)(1-rcosθ)
(1+r)・(x-rcosθ)=2r(cosθ+1)(1-rcosθ)
x-rcosθ=2r(cosθ+1)(1-rcosθ)/(1+r)
y+rsinθ=(rsinθ)/(1-rcosθ)・(x-rcosθ)=2r(cosθ+1)(rsinθ)/(1+r)
===================================
(rcosθ、rsinθ)と(rcos(π-2θ),rsin(π-2θ))=(-rcos2θ,rsin2θ)の中点((rcosθ-rcos2θ)/2,((rsinθ+rsin2θ)/2)
からの距離の2乗は
L^2={2r(cosθ+1)(1-rcosθ)/(1+r)+rcosθ-(rcosθ-rcos2θ)/2}^2+{2r(cosθ+1)(rsinθ)/(1+r)-rsinθ-((rsinθ+rsin2θ)/2}^2
{2r(cosθ+1)(1-rcosθ)/(1+r)+r(cosθ+cos2θ)/2}^2+{2r(cosθ+1)(rsinθ)/(1+r)-r(3sinθ+sin2θ)/2}^2
{2r(cosθ+1)(1-rcosθ)/(1+r)+r(cosθ+1)(2cosθ-1))/2}^2+{2r(cosθ+1)(rsinθ)/(1+r)-rsinθ(3+2cosθ)/2}^2
={r(cosθ+1)}^2{4(1-rcosθ)/2(1+r)+(1+r)(2cosθ-1))/2(1+r)}^2+(rsinθ)^2{2r(cosθ+1)/(1+r)-(3+2cosθ)/2}^2
={r(cosθ+1)}^2{(2cosθ(1-r)+3-r)/2(1+r)}^2+(rsinθ)^2{(2cosθ(1-r)+3-r)/2(1+r)}^2
=r^2(2cosθ+2){(2cosθ(1-r)+3-r)/2(1+r)}^2
=r^2(2cos(θ/2))^2{(2cosθ(1-r)+3-r)/2(1+r)}^2
=(rcos(θ/2))^2{(2cosθ(1-r)+3-r)/(1+r)}^2
=(rcos(θ/2))^2{(2cosθ(1-r)+3-r)/(1+r)}^2
(rcos(θ/2))^2{(2cos(θ/2))^2(1-r)+(1+r))/(1+r)}^2
===================================
2Lと1+rの比較が問題となる
これにより結論自体を大きく変更せざるを得なくなった。
===================================
n→∞のとき
2L→r(10-6r)/(1+r)
これと1+rの比較になるが
r(10-6r)/(1+r)<1+rとなるのは
10r-6r^2<1+2r+r^2
7r^2-8r+1>0
(r-1)(7r-1)>0→r<1/7
===================================
r=1/6
n=3: 0.318123→0.526056
n=5: 0.359868→0.379365
n=7: 0.3719
n=9: 0.37692
n=11: 0.379476
n=13: 0.380951
n=21: 0.383251
n=41: 0.384308
n=61: 0.384515
n=81: 0.384588
n=101: 0.384623
===================================
r=1/10
n=3: 0.214719→0.725685
n=5: 0.242886→0.51794
n=7: 0.251007→0.472759
n=9: 0.254395→0.455425
n=11: 0.25612→0.446916
n=13: 0.257116→0.4421
n=21: 0.258668→0.434724
n=41: 0.259382→0.431388
n=61: 0.259521→0.430741
n=81: 0.25957→0.430511
n=101: 0.259594→0.430403
===================================
r=1/108
n=3: 0.0236169→6.00993
n=5: 0.0267152→4.2345
n=7: 0.0276084→3.85272
n=9: 0.0279811→3.70671
n=11: 0.0281709→3.63513
n=13: 0.0282804→3.59464
n=21: 0.0284511→3.53269
n=41: 0.0285296→3.50466
n=61: 0.0285449→3.49923
n=81: 0.0285504→3.4973
n=101: 0.0285529→3.49639
===================================