■円盤の問題(その56)

 黄金比は西洋人に愛される形,白銀比は東洋人に好まれる形といわれる.実際,わが国の仏教寺院建築,たとえば大和の法隆寺は白銀比長方形の区画の上に建てられている.古代エジプトのピラミッドの底面の1辺の長さと高さの比や古代ギリシャのパルテノン神殿の外形にも黄金長方形が使われていることが知られている.

 和算には○△□が頻繁に登場する.和算は日本特有のものだそうであるが,日本の直線(正多角形)に対して,西洋の星形多角形や曲線(エピサイクル)も西洋的か東洋的かの対比の類である.函館戦争で榎本武揚が立てこもった五稜郭には黄金比がみられるが,これは西洋からの輸入によるものなのだろう.

===================================

【補】黄金比と白銀比

 1辺の長さが1の正多角形を考える.正三角形は対角線をもたないが,正六角形には長さ√3と2の2種類の対角線がある.対角線の長さが1種類なのは正方形の√2と正五角形の(1+√5)/2に限られる(正方形と正五角形の特殊性).

 √2とφ=(1+√5)/2は1辺と対角線の長さの比である特別な値であって,それぞれ白銀比,黄金比と呼ばれている.つぎに縦横比が白銀比,黄金比の長方形を考える.白銀長方形を長辺を2等分するように2つ折りにすると,一回り小さな白銀長方形が現れる.このことから白銀長方形は紙のサイズの規格になっている.一方,黄金長方形から正方形を取り除くと一回り小さな黄金長方形が現れてくる.黄金長方形も自己再現型図形としてよく知られている.

 この操作は無限に続けることができるが,このことは黄金比,白銀比がそれぞれ,無限級数

  1+1/φ+1/φ^2+1/φ^3+1/φ^4+・・・=φ^2

  1+1/2+1/2^2+1/2^3+1/2^4+・・・=2

無限連分数

  φ=[1:1,1,1,,1,・・・]

  √2=[1:2,2,2,2,・・・]

で表されることと同義である.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 正六角形の場合,辺と対角線の長さの比は1:√3,1:2となる.1:2はドミノや日本の畳の形であるが,細長すぎて安定しない形といえるかもしれない.1:√3には白金比という呼び名もあるらしい.

  1+1/3+1/3^2+1/3^3+1/3^4+・・・=3/2

  √3=[1:1,2,1,2,・・・]

===================================